123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 |
- // Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
- // Copyright 2008-2016 National ICT Australia (NICTA)
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // ------------------------------------------------------------------------
- //! \addtogroup glue_mvnrnd
- //! @{
- // implementation based on:
- // James E. Gentle.
- // Generation of Random Numbers.
- // Computational Statistics, pp. 305-331, 2009.
- // http://dx.doi.org/10.1007/978-0-387-98144-4_7
- template<typename T1, typename T2>
- inline
- void
- glue_mvnrnd_vec::apply(Mat<typename T1::elem_type>& out, const Glue<T1,T2,glue_mvnrnd_vec>& expr)
- {
- arma_extra_debug_sigprint();
-
- const bool status = glue_mvnrnd::apply_direct(out, expr.A, expr.B, uword(1));
-
- if(status == false)
- {
- arma_stop_runtime_error("mvnrnd(): given covariance matrix is not symmetric positive semi-definite");
- }
- }
- template<typename T1, typename T2>
- inline
- void
- glue_mvnrnd::apply(Mat<typename T1::elem_type>& out, const Glue<T1,T2,glue_mvnrnd>& expr)
- {
- arma_extra_debug_sigprint();
-
- const bool status = glue_mvnrnd::apply_direct(out, expr.A, expr.B, expr.aux_uword);
-
- if(status == false)
- {
- arma_stop_runtime_error("mvnrnd(): given covariance matrix is not symmetric positive semi-definite");
- }
- }
- template<typename T1, typename T2>
- inline
- bool
- glue_mvnrnd::apply_direct(Mat<typename T1::elem_type>& out, const Base<typename T1::elem_type,T1>& M, const Base<typename T1::elem_type,T2>& C, const uword N)
- {
- arma_extra_debug_sigprint();
-
- typedef typename T1::elem_type eT;
-
- const quasi_unwrap<T1> UM(M.get_ref());
- const quasi_unwrap<T2> UC(C.get_ref());
-
- arma_debug_check( (UM.M.is_colvec() == false) && (UM.M.is_empty() == false), "mvnrnd(): given mean must be a column vector" );
- arma_debug_check( (UC.M.is_square() == false), "mvnrnd(): given covariance matrix must be square sized" );
- arma_debug_check( (UM.M.n_rows != UC.M.n_rows), "mvnrnd(): number of rows in given mean vector and covariance matrix must match" );
-
- if( UM.M.is_empty() || UC.M.is_empty() )
- {
- out.set_size(0,N);
- return true;
- }
-
- // if(auxlib::rudimentary_sym_check(UC.M) == false)
- // {
- // arma_debug_warn("mvnrnd(): given matrix is not symmetric");
- // return false;
- // }
-
- if((arma_config::debug) && (auxlib::rudimentary_sym_check(UC.M) == false))
- {
- arma_debug_warn("mvnrnd(): given matrix is not symmetric");
- }
-
- bool status = false;
-
- if(UM.is_alias(out) || UC.is_alias(out))
- {
- Mat<eT> tmp;
-
- status = glue_mvnrnd::apply_noalias(tmp, UM.M, UC.M, N);
-
- out.steal_mem(tmp);
- }
- else
- {
- status = glue_mvnrnd::apply_noalias(out, UM.M, UC.M, N);
- }
-
- if(status == false) { out.soft_reset(); }
-
- return status;
- }
- template<typename eT>
- inline
- bool
- glue_mvnrnd::apply_noalias(Mat<eT>& out, const Mat<eT>& M, const Mat<eT>& C, const uword N)
- {
- arma_extra_debug_sigprint();
-
- Mat<eT> D;
-
- const bool chol_status = op_chol::apply_direct(D, C, 1); // '1' means "lower triangular"
-
- if(chol_status == false)
- {
- // C is not symmetric positive definite, so find approximate square root of C
-
- Col<eT> eigval; // NOTE: eT is constrained to be real (ie. float or double) in fn_mvnrnd.hpp
- Mat<eT> eigvec;
-
- const bool eig_status = eig_sym_helper(eigval, eigvec, C, 'd', "mvnrnd()");
-
- if(eig_status == false) { return false; }
-
- eT* eigval_mem = eigval.memptr();
- const uword eigval_n_elem = eigval.n_elem;
-
- // since we're doing an approximation, tolerate tiny negative eigenvalues
-
- const eT tol = eT(-100) * Datum<eT>::eps * norm(C, "fro");
-
- if(arma_isfinite(tol) == false) { return false; }
-
- for(uword i=0; i<eigval_n_elem; ++i)
- {
- const eT val = eigval_mem[i];
-
- if( (val < tol) || (arma_isfinite(val) == false) ) { return false; }
- }
-
- for(uword i=0; i<eigval_n_elem; ++i) { if(eigval_mem[i] < eT(0)) { eigval_mem[i] = eT(0); } }
-
- Mat<eT> DD = eigvec * diagmat(sqrt(eigval));
-
- D.steal_mem(DD);
- }
-
- out = D * randn< Mat<eT> >(M.n_rows, N);
-
- if(N == 1)
- {
- out += M;
- }
- else
- if(N > 1)
- {
- out.each_col() += M;
- }
-
- return true;
- }
- //! @}
|