123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344 |
- // Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
- // Copyright 2008-2016 National ICT Australia (NICTA)
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // ------------------------------------------------------------------------
- //! \addtogroup fn_svds
- //! @{
- template<typename T1>
- inline
- bool
- svds_helper
- (
- Mat<typename T1::elem_type>& U,
- Col<typename T1::pod_type >& S,
- Mat<typename T1::elem_type>& V,
- const SpBase<typename T1::elem_type,T1>& X,
- const uword k,
- const typename T1::pod_type tol,
- const bool calc_UV,
- const typename arma_real_only<typename T1::elem_type>::result* junk = 0
- )
- {
- arma_extra_debug_sigprint();
- arma_ignore(junk);
-
- typedef typename T1::elem_type eT;
- typedef typename T1::pod_type T;
-
- arma_debug_check
- (
- ( ((void*)(&U) == (void*)(&S)) || (&U == &V) || ((void*)(&S) == (void*)(&V)) ),
- "svds(): two or more output objects are the same object"
- );
-
- arma_debug_check( (tol < T(0)), "svds(): tol must be >= 0" );
-
- const unwrap_spmat<T1> tmp(X.get_ref());
- const SpMat<eT>& A = tmp.M;
-
- const uword kk = (std::min)( (std::min)(A.n_rows, A.n_cols), k );
-
- const T A_max = (A.n_nonzero > 0) ? T(max(abs(Col<eT>(const_cast<eT*>(A.values), A.n_nonzero, false)))) : T(0);
-
- if(A_max == T(0))
- {
- // TODO: use reset instead ?
- S.zeros(kk);
-
- if(calc_UV)
- {
- U.eye(A.n_rows, kk);
- V.eye(A.n_cols, kk);
- }
- }
- else
- {
- SpMat<eT> C( (A.n_rows + A.n_cols), (A.n_rows + A.n_cols) );
-
- SpMat<eT> B = A / A_max;
- SpMat<eT> Bt = B.t();
-
- C(0, A.n_rows, arma::size(B) ) = B;
- C(A.n_rows, 0, arma::size(Bt)) = Bt;
-
- Bt.reset();
- B.reset();
-
- Col<eT> eigval;
- Mat<eT> eigvec;
-
- const bool status = sp_auxlib::eigs_sym(eigval, eigvec, C, kk, "la", (tol / Datum<T>::sqrt2));
-
- if(status == false)
- {
- U.soft_reset();
- S.soft_reset();
- V.soft_reset();
-
- return false;
- }
-
- const T A_norm = max(eigval);
-
- const T tol2 = tol / Datum<T>::sqrt2 * A_norm;
-
- uvec indices = find(eigval > tol2);
-
- if(indices.n_elem > kk)
- {
- indices = indices.subvec(0,kk-1);
- }
- else
- if(indices.n_elem < kk)
- {
- const uvec indices2 = find(abs(eigval) <= tol2);
-
- const uword N_extra = (std::min)( indices2.n_elem, (kk - indices.n_elem) );
-
- if(N_extra > 0) { indices = join_cols(indices, indices2.subvec(0,N_extra-1)); }
- }
-
- const uvec sorted_indices = sort_index(eigval, "descend");
-
- S = eigval.elem(sorted_indices); S *= A_max;
-
- if(calc_UV)
- {
- uvec U_row_indices(A.n_rows); for(uword i=0; i < A.n_rows; ++i) { U_row_indices[i] = i; }
- uvec V_row_indices(A.n_cols); for(uword i=0; i < A.n_cols; ++i) { V_row_indices[i] = i + A.n_rows; }
-
- U = Datum<T>::sqrt2 * eigvec(U_row_indices, sorted_indices);
- V = Datum<T>::sqrt2 * eigvec(V_row_indices, sorted_indices);
- }
- }
-
- if(S.n_elem < k) { arma_debug_warn("svds(): found fewer singular values than specified"); }
-
- return true;
- }
- template<typename T1>
- inline
- bool
- svds_helper
- (
- Mat<typename T1::elem_type>& U,
- Col<typename T1::pod_type >& S,
- Mat<typename T1::elem_type>& V,
- const SpBase<typename T1::elem_type,T1>& X,
- const uword k,
- const typename T1::pod_type tol,
- const bool calc_UV,
- const typename arma_cx_only<typename T1::elem_type>::result* junk = 0
- )
- {
- arma_extra_debug_sigprint();
- arma_ignore(junk);
-
- typedef typename T1::elem_type eT;
- typedef typename T1::pod_type T;
-
- if(arma_config::arpack == false)
- {
- arma_stop_logic_error("svds(): use of ARPACK must be enabled for decomposition of complex matrices");
- return false;
- }
-
- arma_debug_check
- (
- ( ((void*)(&U) == (void*)(&S)) || (&U == &V) || ((void*)(&S) == (void*)(&V)) ),
- "svds(): two or more output objects are the same object"
- );
-
- arma_debug_check( (tol < T(0)), "svds(): tol must be >= 0" );
-
- const unwrap_spmat<T1> tmp(X.get_ref());
- const SpMat<eT>& A = tmp.M;
-
- const uword kk = (std::min)( (std::min)(A.n_rows, A.n_cols), k );
-
- const T A_max = (A.n_nonzero > 0) ? T(max(abs(Col<eT>(const_cast<eT*>(A.values), A.n_nonzero, false)))) : T(0);
-
- if(A_max == T(0))
- {
- // TODO: use reset instead ?
- S.zeros(kk);
-
- if(calc_UV)
- {
- U.eye(A.n_rows, kk);
- V.eye(A.n_cols, kk);
- }
- }
- else
- {
- SpMat<eT> C( (A.n_rows + A.n_cols), (A.n_rows + A.n_cols) );
-
- SpMat<eT> B = A / A_max;
- SpMat<eT> Bt = B.t();
-
- C(0, A.n_rows, arma::size(B) ) = B;
- C(A.n_rows, 0, arma::size(Bt)) = Bt;
-
- Bt.reset();
- B.reset();
-
- Col<eT> eigval_tmp;
- Mat<eT> eigvec;
-
- const bool status = sp_auxlib::eigs_gen(eigval_tmp, eigvec, C, kk, "lr", (tol / Datum<T>::sqrt2));
-
- if(status == false)
- {
- U.soft_reset();
- S.soft_reset();
- V.soft_reset();
-
- return false;
- }
-
- const Col<T> eigval = real(eigval_tmp);
-
- const T A_norm = max(eigval);
-
- const T tol2 = tol / Datum<T>::sqrt2 * A_norm;
-
- uvec indices = find(eigval > tol2);
-
- if(indices.n_elem > kk)
- {
- indices = indices.subvec(0,kk-1);
- }
- else
- if(indices.n_elem < kk)
- {
- const uvec indices2 = find(abs(eigval) <= tol2);
-
- const uword N_extra = (std::min)( indices2.n_elem, (kk - indices.n_elem) );
-
- if(N_extra > 0) { indices = join_cols(indices, indices2.subvec(0,N_extra-1)); }
- }
-
- const uvec sorted_indices = sort_index(eigval, "descend");
-
- S = eigval.elem(sorted_indices); S *= A_max;
-
- if(calc_UV)
- {
- uvec U_row_indices(A.n_rows); for(uword i=0; i < A.n_rows; ++i) { U_row_indices[i] = i; }
- uvec V_row_indices(A.n_cols); for(uword i=0; i < A.n_cols; ++i) { V_row_indices[i] = i + A.n_rows; }
-
- U = Datum<T>::sqrt2 * eigvec(U_row_indices, sorted_indices);
- V = Datum<T>::sqrt2 * eigvec(V_row_indices, sorted_indices);
- }
- }
-
- if(S.n_elem < k) { arma_debug_warn("svds(): found fewer singular values than specified"); }
-
- return true;
- }
- //! find the k largest singular values and corresponding singular vectors of sparse matrix X
- template<typename T1>
- inline
- bool
- svds
- (
- Mat<typename T1::elem_type>& U,
- Col<typename T1::pod_type >& S,
- Mat<typename T1::elem_type>& V,
- const SpBase<typename T1::elem_type,T1>& X,
- const uword k,
- const typename T1::pod_type tol = 0.0,
- const typename arma_real_or_cx_only<typename T1::elem_type>::result* junk = 0
- )
- {
- arma_extra_debug_sigprint();
- arma_ignore(junk);
-
- const bool status = svds_helper(U, S, V, X.get_ref(), k, tol, true);
-
- if(status == false) { arma_debug_warn("svds(): decomposition failed"); }
- return status;
- }
- //! find the k largest singular values of sparse matrix X
- template<typename T1>
- inline
- bool
- svds
- (
- Col<typename T1::pod_type >& S,
- const SpBase<typename T1::elem_type,T1>& X,
- const uword k,
- const typename T1::pod_type tol = 0.0,
- const typename arma_real_or_cx_only<typename T1::elem_type>::result* junk = 0
- )
- {
- arma_extra_debug_sigprint();
- arma_ignore(junk);
-
- Mat<typename T1::elem_type> U;
- Mat<typename T1::elem_type> V;
-
- const bool status = svds_helper(U, S, V, X.get_ref(), k, tol, false);
-
- if(status == false) { arma_debug_warn("svds(): decomposition failed"); }
-
- return status;
- }
- //! find the k largest singular values of sparse matrix X
- template<typename T1>
- arma_warn_unused
- inline
- Col<typename T1::pod_type>
- svds
- (
- const SpBase<typename T1::elem_type,T1>& X,
- const uword k,
- const typename T1::pod_type tol = 0.0,
- const typename arma_real_or_cx_only<typename T1::elem_type>::result* junk = 0
- )
- {
- arma_extra_debug_sigprint();
- arma_ignore(junk);
-
- Col<typename T1::pod_type> S;
- Mat<typename T1::elem_type> U;
- Mat<typename T1::elem_type> V;
-
- const bool status = svds_helper(U, S, V, X.get_ref(), k, tol, false);
-
- if(status == false) { arma_stop_runtime_error("svds(): decomposition failed"); }
-
- return S;
- }
- //! @}
|