123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377 |
- // Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
- // Copyright 2008-2016 National ICT Australia (NICTA)
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // ------------------------------------------------------------------------
- //! \addtogroup band_helper
- //! @{
- namespace band_helper
- {
- template<typename eT>
- inline
- bool
- is_band(uword& out_KL, uword& out_KU, const Mat<eT>& A, const uword N_min)
- {
- arma_extra_debug_sigprint();
-
- // NOTE: assuming that A has a square size
- // NOTE: assuming that N_min is >= 4
-
- const uword N = A.n_rows;
-
- if(N < N_min) { return false; }
-
- // first, quickly check bottom-left and top-right corners
-
- const eT eT_zero = eT(0);
-
- const eT* A_col0 = A.memptr();
- const eT* A_col1 = A_col0 + N;
-
- if( (A_col0[N-2] != eT_zero) || (A_col0[N-1] != eT_zero) || (A_col1[N-2] != eT_zero) || (A_col1[N-1] != eT_zero) ) { return false; }
-
- const eT* A_colNm2 = A.colptr(N-2);
- const eT* A_colNm1 = A_colNm2 + N;
-
- if( (A_colNm2[0] != eT_zero) || (A_colNm2[1] != eT_zero) || (A_colNm1[0] != eT_zero) || (A_colNm1[1] != eT_zero) ) { return false; }
-
- // if we reached this point, go through the entire matrix to work out number of subdiagonals and superdiagonals
-
- const uword n_nonzero_threshold = (N*N)/4; // empirically determined
-
- uword KL = 0; // number of subdiagonals
- uword KU = 0; // number of superdiagonals
-
- const eT* A_colptr = A.memptr();
-
- for(uword col=0; col < N; ++col)
- {
- uword first_nonzero_row = col;
- uword last_nonzero_row = col;
-
- for(uword row=0; row < col; ++row)
- {
- if( A_colptr[row] != eT_zero ) { first_nonzero_row = row; break; }
- }
-
- for(uword row=(col+1); row < N; ++row)
- {
- last_nonzero_row = (A_colptr[row] != eT_zero) ? row : last_nonzero_row;
- }
-
- const uword L_count = last_nonzero_row - col;
- const uword U_count = col - first_nonzero_row;
-
- if( (L_count > KL) || (U_count > KU) )
- {
- KL = (std::max)(KL, L_count);
- KU = (std::max)(KU, U_count);
-
- const uword n_nonzero = N*(KL+KU+1) - (KL*(KL+1) + KU*(KU+1))/2;
-
- // return as soon as we know that it's not worth analysing the matrix any further
-
- if(n_nonzero > n_nonzero_threshold) { return false; }
- }
-
- A_colptr += N;
- }
-
- out_KL = KL;
- out_KU = KU;
-
- return true;
- }
- template<typename eT>
- inline
- bool
- is_band_lower(uword& out_KD, const Mat<eT>& A, const uword N_min)
- {
- arma_extra_debug_sigprint();
-
- // NOTE: assuming that A has a square size
- // NOTE: assuming that N_min is >= 4
-
- const uword N = A.n_rows;
-
- if(N < N_min) { return false; }
-
- // first, quickly check bottom-left corner
-
- const eT eT_zero = eT(0);
-
- const eT* A_col0 = A.memptr();
- const eT* A_col1 = A_col0 + N;
-
- if( (A_col0[N-2] != eT_zero) || (A_col0[N-1] != eT_zero) || (A_col1[N-2] != eT_zero) || (A_col1[N-1] != eT_zero) ) { return false; }
-
- // if we reached this point, go through the bottom triangle to work out number of subdiagonals
-
- const uword n_nonzero_threshold = ( N*N - (N*(N-1))/2 ) / 4; // empirically determined
-
- uword KL = 0; // number of subdiagonals
-
- const eT* A_colptr = A.memptr();
-
- for(uword col=0; col < N; ++col)
- {
- uword last_nonzero_row = col;
-
- for(uword row=(col+1); row < N; ++row)
- {
- last_nonzero_row = (A_colptr[row] != eT_zero) ? row : last_nonzero_row;
- }
-
- const uword L_count = last_nonzero_row - col;
-
- if(L_count > KL)
- {
- KL = L_count;
-
- const uword n_nonzero = N*(KL+1) - (KL*(KL+1))/2;
-
- // return as soon as we know that it's not worth analysing the matrix any further
-
- if(n_nonzero > n_nonzero_threshold) { return false; }
- }
-
- A_colptr += N;
- }
-
- out_KD = KL;
-
- return true;
- }
- template<typename eT>
- inline
- bool
- is_band_upper(uword& out_KD, const Mat<eT>& A, const uword N_min)
- {
- arma_extra_debug_sigprint();
-
- // NOTE: assuming that A has a square size
- // NOTE: assuming that N_min is >= 4
-
- const uword N = A.n_rows;
-
- if(N < N_min) { return false; }
-
- // first, quickly check top-right corner
-
- const eT eT_zero = eT(0);
-
- const eT* A_colNm2 = A.colptr(N-2);
- const eT* A_colNm1 = A_colNm2 + N;
-
- if( (A_colNm2[0] != eT_zero) || (A_colNm2[1] != eT_zero) || (A_colNm1[0] != eT_zero) || (A_colNm1[1] != eT_zero) ) { return false; }
-
- // if we reached this point, go through the entire matrix to work out number of superdiagonals
-
- const uword n_nonzero_threshold = ( N*N - (N*(N-1))/2 ) / 4; // empirically determined
-
- uword KU = 0; // number of superdiagonals
-
- const eT* A_colptr = A.memptr();
-
- for(uword col=0; col < N; ++col)
- {
- uword first_nonzero_row = col;
-
- for(uword row=0; row < col; ++row)
- {
- if( A_colptr[row] != eT_zero ) { first_nonzero_row = row; break; }
- }
-
- const uword U_count = col - first_nonzero_row;
-
- if(U_count > KU)
- {
- KU = U_count;
-
- const uword n_nonzero = N*(KU+1) - (KU*(KU+1))/2;
-
- // return as soon as we know that it's not worth analysing the matrix any further
-
- if(n_nonzero > n_nonzero_threshold) { return false; }
- }
-
- A_colptr += N;
- }
-
- out_KD = KU;
-
- return true;
- }
- template<typename eT>
- inline
- void
- compress(Mat<eT>& AB, const Mat<eT>& A, const uword KL, const uword KU, const bool use_offset)
- {
- arma_extra_debug_sigprint();
-
- // NOTE: assuming that A has a square size
-
- // band matrix storage format
- // http://www.netlib.org/lapack/lug/node124.html
-
- // for ?gbsv, matrix AB size: 2*KL+KU+1 x N; band representation of A stored in rows KL+1 to 2*KL+KU+1 (note: fortran counts from 1)
- // for ?gbsvx, matrix AB size: KL+KU+1 x N; band representaiton of A stored in rows 1 to KL+KU+1 (note: fortran counts from 1)
- //
- // the +1 in the above formulas is to take into account the main diagonal
-
- const uword AB_n_rows = (use_offset) ? uword(2*KL + KU + 1) : uword(KL + KU + 1);
- const uword N = A.n_rows;
-
- AB.set_size(AB_n_rows, N);
-
- if(A.is_empty()) { AB.zeros(); return; }
-
- if(AB_n_rows == uword(1))
- {
- eT* AB_mem = AB.memptr();
-
- for(uword i=0; i<N; ++i) { AB_mem[i] = A.at(i,i); }
- }
- else
- {
- AB.zeros(); // paranoia
-
- for(uword j=0; j < N; ++j)
- {
- const uword A_row_start = (j > KU) ? uword(j - KU) : uword(0);
- const uword A_row_endp1 = (std::min)(N, j+KL+1);
-
- const uword length = A_row_endp1 - A_row_start;
-
- const uword AB_row_start = (KU > j) ? (KU - j) : uword(0);
-
- const eT* A_colptr = A.colptr(j) + A_row_start;
- eT* AB_colptr = AB.colptr(j) + AB_row_start + ( (use_offset) ? KL : uword(0) );
-
- arrayops::copy( AB_colptr, A_colptr, length );
- }
- }
- }
- template<typename eT>
- inline
- void
- uncompress(Mat<eT>& A, const Mat<eT>& AB, const uword KL, const uword KU, const bool use_offset)
- {
- arma_extra_debug_sigprint();
-
- const uword AB_n_rows = AB.n_rows;
- const uword N = AB.n_cols;
-
- arma_debug_check( (AB_n_rows != ((use_offset) ? uword(2*KL + KU + 1) : uword(KL + KU + 1))), "band_helper::uncompress(): detected inconsistency" );
-
- A.zeros(N,N); // assuming there is no aliasing between A and AB
-
- if(AB_n_rows == uword(1))
- {
- const eT* AB_mem = AB.memptr();
-
- for(uword i=0; i<N; ++i) { A.at(i,i) = AB_mem[i]; }
- }
- else
- {
- for(uword j=0; j < N; ++j)
- {
- const uword A_row_start = (j > KU) ? uword(j - KU) : uword(0);
- const uword A_row_endp1 = (std::min)(N, j+KL+1);
-
- const uword length = A_row_endp1 - A_row_start;
-
- const uword AB_row_start = (KU > j) ? (KU - j) : uword(0);
-
- const eT* AB_colptr = AB.colptr(j) + AB_row_start + ( (use_offset) ? KL : uword(0) );
- eT* A_colptr = A.colptr(j) + A_row_start;
-
- arrayops::copy( A_colptr, AB_colptr, length );
- }
- }
- }
- template<typename eT>
- inline
- void
- extract_tridiag(Mat<eT>& out, const Mat<eT>& A)
- {
- arma_extra_debug_sigprint();
-
- // NOTE: assuming that A has a square size and is at least 2x2
-
- const uword N = A.n_rows;
-
- out.set_size(N, 3); // assuming there is no aliasing between 'out' and 'A'
-
- if(N < 2) { return; }
-
- eT* DL = out.colptr(0);
- eT* DD = out.colptr(1);
- eT* DU = out.colptr(2);
-
- DD[0] = A[0];
- DL[0] = A[1];
-
- const uword Nm1 = N-1;
- const uword Nm2 = N-2;
-
- for(uword i=0; i < Nm2; ++i)
- {
- const uword ip1 = i+1;
-
- const eT* data = &(A.at(i, ip1));
-
- const eT tmp0 = data[0];
- const eT tmp1 = data[1];
- const eT tmp2 = data[2];
-
- DL[ip1] = tmp2;
- DD[ip1] = tmp1;
- DU[i ] = tmp0;
- }
-
- const eT* data = &(A.at(Nm2, Nm1));
-
- DL[Nm1] = 0;
- DU[Nm2] = data[0];
- DU[Nm1] = 0;
- DD[Nm1] = data[1];
- }
- } // end of namespace band_helper
- //! @}
|