123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714 |
- // Copyright (C) 2005, 2006 International Business Machines and others.
- // All Rights Reserved.
- // This code is published under the Eclipse Public License.
- //
- // $Id: MittelmannDistCntrlNeumA.hpp 2005 2011-06-06 12:55:16Z stefan $
- //
- // Authors: Andreas Waechter IBM 2005-10-18
- // based on MyNLP.hpp
- #ifndef __MITTELMANNDISTRCNTRLNEUMA_HPP__
- #define __MITTELMANNDISTRCNTRLNEUMA_HPP__
- #include "IpTNLP.hpp"
- #include "RegisteredTNLP.hpp"
- #ifdef HAVE_CONFIG_H
- #include "config.h"
- #else
- #include "configall_system.h"
- #endif
- #ifdef HAVE_CMATH
- # include <cmath>
- #else
- # ifdef HAVE_MATH_H
- # include <math.h>
- # else
- # error "don't have header file for math"
- # endif
- #endif
- #ifdef HAVE_CSTDIO
- # include <cstdio>
- #else
- # ifdef HAVE_STDIO_H
- # include <stdio.h>
- # else
- # error "don't have header file for stdio"
- # endif
- #endif
- using namespace Ipopt;
- /** Base class for distributed control problems with homogeneous
- * Neumann boundary conditions, as formulated by Hans Mittelmann as
- * Examples 4-6 in "Optimization Techniques for Solving Elliptic
- * Control Problems with Control and State Constraints. Part 2:
- * Distributed Control"
- */
- class MittelmannDistCntrlNeumABase : public RegisteredTNLP
- {
- public:
- /** Constructor. N is the number of mesh points in one dimension
- * (excluding boundary). */
- MittelmannDistCntrlNeumABase();
- /** Default destructor */
- virtual ~MittelmannDistCntrlNeumABase();
- /**@name Overloaded from TNLP */
- //@{
- /** Method to return some info about the nlp */
- virtual bool get_nlp_info(Index& n, Index& m, Index& nnz_jac_g,
- Index& nnz_h_lag, IndexStyleEnum& index_style);
- /** Method to return the bounds for my problem */
- virtual bool get_bounds_info(Index n, Number* x_l, Number* x_u,
- Index m, Number* g_l, Number* g_u);
- /** Method to return the starting point for the algorithm */
- virtual bool get_starting_point(Index n, bool init_x, Number* x,
- bool init_z, Number* z_L, Number* z_U,
- Index m, bool init_lambda,
- Number* lambda);
- /** Method to return the objective value */
- virtual bool eval_f(Index n, const Number* x, bool new_x, Number& obj_value);
- /** Method to return the gradient of the objective */
- virtual bool eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f);
- /** Method to return the constraint residuals */
- virtual bool eval_g(Index n, const Number* x, bool new_x, Index m, Number* g);
- /** Method to return:
- * 1) The structure of the jacobian (if "values" is NULL)
- * 2) The values of the jacobian (if "values" is not NULL)
- */
- virtual bool eval_jac_g(Index n, const Number* x, bool new_x,
- Index m, Index nele_jac, Index* iRow, Index *jCol,
- Number* values);
- /** Method to return:
- * 1) The structure of the hessian of the lagrangian (if "values" is NULL)
- * 2) The values of the hessian of the lagrangian (if "values" is not NULL)
- */
- virtual bool eval_h(Index n, const Number* x, bool new_x,
- Number obj_factor, Index m, const Number* lambda,
- bool new_lambda, Index nele_hess, Index* iRow,
- Index* jCol, Number* values);
- //@}
- /** Method for returning scaling parameters */
- virtual bool get_scaling_parameters(Number& obj_scaling,
- bool& use_x_scaling, Index n,
- Number* x_scaling,
- bool& use_g_scaling, Index m,
- Number* g_scaling);
- /** @name Solution Methods */
- //@{
- /** This method is called after the optimization, and could write an
- * output file with the optimal profiles */
- virtual void finalize_solution(SolverReturn status,
- Index n, const Number* x, const Number* z_L, const Number* z_U,
- Index m, const Number* g, const Number* lambda,
- Number obj_value,
- const IpoptData* ip_data,
- IpoptCalculatedQuantities* ip_cq);
- //@}
- protected:
- /** Method for setting the internal parameters that define the
- * problem. It must be called by the child class in its
- * implementation of InitializeParameters. */
- void SetBaseParameters(Index N, Number lb_y,
- Number ub_y, Number lb_u, Number ub_u,
- Number b_0j, Number b_1j, Number b_i0, Number b_i1,
- Number u_init);
- /**@name Functions that defines a particular instance. */
- //@{
- /** Target profile function for y (and initial guess function) */
- virtual Number y_d_cont(Number x1, Number x2) const =0;
- /** Integrant in objective function */
- virtual Number fint_cont(Number x1, Number x2, Number y, Number u) const =0;
- /** First partial derivative of fint_cont w.r.t. y */
- virtual Number fint_cont_dy(Number x1, Number x2, Number y, Number u) const =0;
- /** First partial derivative of fint_cont w.r.t. u */
- virtual Number fint_cont_du(Number x1, Number x2, Number y, Number u) const =0;
- /** Second partial derivative of fint_cont w.r.t. y,y */
- virtual Number fint_cont_dydy(Number x1, Number x2, Number y, Number u) const =0;
- /** returns true if second partial derivative of fint_cont
- * w.r.t. y,y is always zero. */
- virtual bool fint_cont_dydy_alwayszero() const =0;
- /** Second partial derivative of fint_cont w.r.t. u,u */
- virtual Number fint_cont_dudu(Number x1, Number x2, Number y, Number u) const =0;
- /** returns true if second partial derivative of fint_cont
- * w.r.t. u,u is always zero. */
- virtual bool fint_cont_dudu_alwayszero() const =0;
- /** Second partial derivative of fint_cont w.r.t. y,u */
- virtual Number fint_cont_dydu(Number x1, Number x2, Number y, Number u) const =0;
- /** returns true if second partial derivative of fint_cont
- * w.r.t. y,u is always zero. */
- virtual bool fint_cont_dydu_alwayszero() const =0;
- /** Forcing function for the elliptic equation */
- virtual Number d_cont(Number x1, Number x2, Number y, Number u) const =0;
- /** First partial derivative of forcing function w.r.t. y */
- virtual Number d_cont_dy(Number x1, Number x2, Number y, Number u) const =0;
- /** First partial derivative of forcing function w.r.t. u */
- virtual Number d_cont_du(Number x1, Number x2, Number y, Number u) const =0;
- /** Second partial derivative of forcing function w.r.t. y,y */
- virtual Number d_cont_dydy(Number x1, Number x2, Number y, Number u) const =0;
- /** returns true if second partial derivative of d_cont
- * w.r.t. y,y is always zero. */
- virtual bool d_cont_dydy_alwayszero() const =0;
- /** Second partial derivative of forcing function w.r.t. u,u */
- virtual Number d_cont_dudu(Number x1, Number x2, Number y, Number u) const =0;
- /** returns true if second partial derivative of d_cont
- * w.r.t. y,y is always zero. */
- virtual bool d_cont_dudu_alwayszero() const =0;
- /** Second partial derivative of forcing function w.r.t. y,u */
- virtual Number d_cont_dydu(Number x1, Number x2, Number y, Number u) const =0;
- /** returns true if second partial derivative of d_cont
- * w.r.t. y,u is always zero. */
- virtual bool d_cont_dydu_alwayszero() const =0;
- //@}
- private:
- /**@name Methods to block default compiler methods.
- * The compiler automatically generates the following three methods.
- * Since the default compiler implementation is generally not what
- * you want (for all but the most simple classes), we usually
- * put the declarations of these methods in the private section
- * and never implement them. This prevents the compiler from
- * implementing an incorrect "default" behavior without us
- * knowing. (See Scott Meyers book, "Effective C++")
- *
- */
- //@{
- MittelmannDistCntrlNeumABase(const MittelmannDistCntrlNeumABase&);
- MittelmannDistCntrlNeumABase& operator=(const MittelmannDistCntrlNeumABase&);
- //@}
- /**@name Problem specification */
- //@{
- /** Number of mesh points in one dimension (excluding boundary) */
- Index N_;
- /** Step size */
- Number h_;
- /** h_ squaredd */
- Number hh_;
- /** overall lower bound on y */
- Number lb_y_;
- /** overall upper bound on y */
- Number ub_y_;
- /** overall lower bound on u */
- Number lb_u_;
- /** overall upper bound on u */
- Number ub_u_;
- /** Value of beta function (in Neumann boundary condition) for
- * (0,x2) bounray */
- Number b_0j_;
- /** Value of beta function (in Neumann boundary condition) for
- * (1,x2) bounray */
- Number b_1j_;
- /** Value of beta function (in Neumann boundary condition) for
- * (x1,0) bounray */
- Number b_i0_;
- /** Value of beta function (in Neumann boundary condition) for
- * (x1,1) bounray */
- Number b_i1_;
- /** Initial value for the constrols u */
- Number u_init_;
- /** Array for the target profile for y */
- Number* y_d_;
- //@}
- /**@name Auxilliary methods */
- //@{
- /** Translation of mesh point indices to NLP variable indices for
- * y(x_ij) */
- inline Index y_index(Index i, Index j) const
- {
- return j + (N_+2)*i;
- }
- /** Translation of mesh point indices to NLP variable indices for
- * u(x_ij) */
- inline Index u_index(Index i, Index j) const
- {
- return (N_+2)*(N_+2) + (j-1) + (N_)*(i-1);
- }
- /** Translation of interior mesh point indices to the corresponding
- * PDE constraint number */
- inline Index pde_index(Index i, Index j) const
- {
- return (j-1) + N_*(i-1);
- }
- /** Compute the grid coordinate for given index in x1 direction */
- inline Number x1_grid(Index i) const
- {
- return h_*(Number)i;
- }
- /** Compute the grid coordinate for given index in x2 direction */
- inline Number x2_grid(Index i) const
- {
- return h_*(Number)i;
- }
- //@}
- };
- /** Class implementating Example 4 */
- class MittelmannDistCntrlNeumA1 : public MittelmannDistCntrlNeumABase
- {
- public:
- MittelmannDistCntrlNeumA1()
- :
- pi_(4.*atan(1.)),
- alpha_(0.001)
- {}
- virtual ~MittelmannDistCntrlNeumA1()
- {}
- virtual bool InitializeProblem(Index N)
- {
- if (N<1) {
- printf("N has to be at least 1.");
- return false;
- }
- Number lb_y = -1e20;
- Number ub_y = 0.371;
- Number lb_u = -8.;
- Number ub_u = 9.;
- Number b_0j = 1.;
- Number b_1j = 1.;
- Number b_i0 = 1.;
- Number b_i1 = 1.;
- Number u_init = (ub_u+lb_u)/2.;
- SetBaseParameters(N, lb_y, ub_y, lb_u, ub_u, b_0j, b_1j, b_i0, b_i1, u_init);
- return true;
- }
- protected:
- /** Target profile function for y */
- virtual Number y_d_cont(Number x1, Number x2) const
- {
- return sin(2.*pi_*x1)*sin(2.*pi_*x2);
- }
- /** Integrant in objective function */
- virtual Number fint_cont(Number x1, Number x2, Number y, Number u) const
- {
- Number diff_y = y-y_d_cont(x1,x2);
- return 0.5*(diff_y*diff_y + alpha_*u*u);
- }
- /** First partial derivative of fint_cont w.r.t. y */
- virtual Number fint_cont_dy(Number x1, Number x2, Number y, Number u) const
- {
- return y-y_d_cont(x1,x2);
- }
- /** First partial derivative of fint_cont w.r.t. u */
- virtual Number fint_cont_du(Number x1, Number x2, Number y, Number u) const
- {
- return alpha_*u;
- }
- /** Second partial derivative of fint_cont w.r.t. y,y */
- virtual Number fint_cont_dydy(Number x1, Number x2, Number y, Number u) const
- {
- return 1.;
- }
- /** returns true if second partial derivative of fint_cont
- * w.r.t. y,y is always zero. */
- virtual bool fint_cont_dydy_alwayszero() const
- {
- return false;
- }
- /** Second partial derivative of fint_cont w.r.t. u,u */
- virtual Number fint_cont_dudu(Number x1, Number x2, Number y, Number u) const
- {
- return alpha_;
- }
- /** returns true if second partial derivative of fint_cont
- * w.r.t. u,u is always zero. */
- virtual bool fint_cont_dudu_alwayszero() const
- {
- return false;
- }
- /** Second partial derivative of fint_cont w.r.t. y,u */
- virtual Number fint_cont_dydu(Number x1, Number x2, Number y, Number u) const
- {
- return 0.;
- }
- /** returns true if second partial derivative of fint_cont
- * w.r.t. y,u is always zero. */
- virtual bool fint_cont_dydu_alwayszero() const
- {
- return true;
- }
- /** Forcing function for the elliptic equation */
- virtual Number d_cont(Number x1, Number x2, Number y, Number u) const
- {
- return -exp(y) - u;
- }
- /** First partial derivative of forcing function w.r.t. y */
- virtual Number d_cont_dy(Number x1, Number x2, Number y, Number u) const
- {
- return -exp(y);
- }
- /** First partial derivative of forcing function w.r.t. u */
- virtual Number d_cont_du(Number x1, Number x2, Number y, Number u) const
- {
- return -1.;
- }
- /** Second partial derivative of forcing function w.r.t y,y */
- virtual Number d_cont_dydy(Number x1, Number x2, Number y, Number u) const
- {
- return -exp(y);
- }
- /** returns true if second partial derivative of d_cont
- * w.r.t. y,y is always zero. */
- virtual bool d_cont_dydy_alwayszero() const
- {
- return false;
- }
- /** Second partial derivative of forcing function w.r.t. u,u */
- virtual Number d_cont_dudu(Number x1, Number x2, Number y, Number u) const
- {
- return 0.;
- }
- /** returns true if second partial derivative of d_cont
- * w.r.t. y,y is always zero. */
- virtual bool d_cont_dudu_alwayszero() const
- {
- return true;
- }
- /** Second partial derivative of forcing function w.r.t. y,u */
- virtual Number d_cont_dydu(Number x1, Number x2, Number y, Number u) const
- {
- return 0.;
- }
- /** returns true if second partial derivative of d_cont
- * w.r.t. y,u is always zero. */
- virtual bool d_cont_dydu_alwayszero() const
- {
- return true;
- }
- private:
- /**@name hide implicitly defined contructors copy operators */
- //@{
- MittelmannDistCntrlNeumA1(const MittelmannDistCntrlNeumA1&);
- MittelmannDistCntrlNeumA1& operator=(const MittelmannDistCntrlNeumA1&);
- //@}
- /** Value of pi (made available for convenience) */
- const Number pi_;
- /** Value for parameter alpha in objective functin */
- const Number alpha_;
- };
- /** Class implementating Example 5 */
- class MittelmannDistCntrlNeumA2 : public MittelmannDistCntrlNeumABase
- {
- public:
- MittelmannDistCntrlNeumA2()
- :
- pi_(4.*atan(1.))
- {}
- virtual ~MittelmannDistCntrlNeumA2()
- {}
- virtual bool InitializeProblem(Index N)
- {
- if (N<1) {
- printf("N has to be at least 1.");
- return false;
- }
- Number lb_y = -1e20;
- Number ub_y = 0.371;
- Number lb_u = -8.;
- Number ub_u = 9.;
- Number b_0j = 1.;
- Number b_1j = 1.;
- Number b_i0 = 1.;
- Number b_i1 = 1.;
- Number u_init = (ub_u+lb_u)/2.;
- SetBaseParameters(N, lb_y, ub_y, lb_u, ub_u, b_0j, b_1j, b_i0, b_i1, u_init);
- return true;
- }
- protected:
- /** Target profile function for y */
- virtual Number y_d_cont(Number x1, Number x2) const
- {
- return sin(2.*pi_*x1)*sin(2.*pi_*x2);
- }
- /** Integrant in objective function */
- virtual Number fint_cont(Number x1, Number x2, Number y, Number u) const
- {
- Number diff_y = y-y_d_cont(x1,x2);
- return 0.5*diff_y*diff_y;
- }
- /** First partial derivative of fint_cont w.r.t. y */
- virtual Number fint_cont_dy(Number x1, Number x2, Number y, Number u) const
- {
- return y-y_d_cont(x1,x2);
- }
- /** First partial derivative of fint_cont w.r.t. u */
- virtual Number fint_cont_du(Number x1, Number x2, Number y, Number u) const
- {
- return 0.;
- }
- /** Second partial derivative of fint_cont w.r.t. y,y */
- virtual Number fint_cont_dydy(Number x1, Number x2, Number y, Number u) const
- {
- return 1.;
- }
- /** returns true if second partial derivative of fint_cont
- * w.r.t. y,y is always zero. */
- virtual bool fint_cont_dydy_alwayszero() const
- {
- return false;
- }
- /** Second partial derivative of fint_cont w.r.t. u,u */
- virtual Number fint_cont_dudu(Number x1, Number x2, Number y, Number u) const
- {
- return 0.;
- }
- /** returns true if second partial derivative of fint_cont
- * w.r.t. u,u is always zero. */
- virtual bool fint_cont_dudu_alwayszero() const
- {
- return true;
- }
- /** Second partial derivative of fint_cont w.r.t. y,u */
- virtual Number fint_cont_dydu(Number x1, Number x2, Number y, Number u) const
- {
- return 0.;
- }
- /** returns true if second partial derivative of fint_cont
- * w.r.t. y,u is always zero. */
- virtual bool fint_cont_dydu_alwayszero() const
- {
- return true;
- }
- /** Forcing function for the elliptic equation */
- virtual Number d_cont(Number x1, Number x2, Number y, Number u) const
- {
- return -exp(y) - u;
- }
- /** First partial derivative of forcing function w.r.t. y */
- virtual Number d_cont_dy(Number x1, Number x2, Number y, Number u) const
- {
- return -exp(y);
- }
- /** First partial derivative of forcing function w.r.t. u */
- virtual Number d_cont_du(Number x1, Number x2, Number y, Number u) const
- {
- return -1.;
- }
- /** Second partial derivative of forcing function w.r.t y,y */
- virtual Number d_cont_dydy(Number x1, Number x2, Number y, Number u) const
- {
- return -exp(y);
- }
- /** returns true if second partial derivative of d_cont
- * w.r.t. y,y is always zero. */
- virtual bool d_cont_dydy_alwayszero() const
- {
- return false;
- }
- /** Second partial derivative of forcing function w.r.t. u,u */
- virtual Number d_cont_dudu(Number x1, Number x2, Number y, Number u) const
- {
- return 0.;
- }
- /** returns true if second partial derivative of d_cont
- * w.r.t. y,y is always zero. */
- virtual bool d_cont_dudu_alwayszero() const
- {
- return true;
- }
- /** Second partial derivative of forcing function w.r.t. y,u */
- virtual Number d_cont_dydu(Number x1, Number x2, Number y, Number u) const
- {
- return 0.;
- }
- /** returns true if second partial derivative of d_cont
- * w.r.t. y,u is always zero. */
- virtual bool d_cont_dydu_alwayszero() const
- {
- return true;
- }
- private:
- /**@name hide implicitly defined contructors copy operators */
- //@{
- MittelmannDistCntrlNeumA2(const MittelmannDistCntrlNeumA2&);
- MittelmannDistCntrlNeumA2& operator=(const MittelmannDistCntrlNeumA2&);
- //@}
- /** Value of pi (made available for convenience) */
- const Number pi_;
- };
- /** Class implementating Example 6 */
- class MittelmannDistCntrlNeumA3 : public MittelmannDistCntrlNeumABase
- {
- public:
- MittelmannDistCntrlNeumA3()
- :
- pi_(4.*atan(1.)),
- M_(1.),
- K_(0.8),
- b_(1.)
- {}
- virtual ~MittelmannDistCntrlNeumA3()
- {}
- virtual bool InitializeProblem(Index N)
- {
- if (N<1) {
- printf("N has to be at least 1.");
- return false;
- }
- Number lb_y = 3.;//-1e20;
- Number ub_y = 6.09;
- Number lb_u = 1.4;
- Number ub_u = 1.6;
- Number b_0j = 1.;
- Number b_1j = 0.;
- Number b_i0 = 1.;
- Number b_i1 = 0.;
- Number u_init = (ub_u+lb_u)/2.;
- SetBaseParameters(N, lb_y, ub_y, lb_u, ub_u, b_0j, b_1j, b_i0, b_i1, u_init);
- return true;
- }
- protected:
- /** Profile function for initial y */
- virtual Number y_d_cont(Number x1, Number x2) const
- {
- return 6.;
- }
- /** Integrant in objective function */
- virtual Number fint_cont(Number x1, Number x2, Number y, Number u) const
- {
- return u*(M_*u - K_*y);
- }
- /** First partial derivative of fint_cont w.r.t. y */
- virtual Number fint_cont_dy(Number x1, Number x2, Number y, Number u) const
- {
- return -K_*u;
- }
- /** First partial derivative of fint_cont w.r.t. u */
- virtual Number fint_cont_du(Number x1, Number x2, Number y, Number u) const
- {
- return 2.*M_*u - K_*y;
- }
- /** Second partial derivative of fint_cont w.r.t. y,y */
- virtual Number fint_cont_dydy(Number x1, Number x2, Number y, Number u) const
- {
- return 0.;
- }
- /** returns true if second partial derivative of fint_cont
- * w.r.t. y,y is always zero. */
- virtual bool fint_cont_dydy_alwayszero() const
- {
- return true;
- }
- /** Second partial derivative of fint_cont w.r.t. u,u */
- virtual Number fint_cont_dudu(Number x1, Number x2, Number y, Number u) const
- {
- return 2.*M_;
- }
- /** returns true if second partial derivative of fint_cont
- * w.r.t. u,u is always zero. */
- virtual bool fint_cont_dudu_alwayszero() const
- {
- return false;
- }
- /** Second partial derivative of fint_cont w.r.t. y,u */
- virtual Number fint_cont_dydu(Number x1, Number x2, Number y, Number u) const
- {
- return -K_;
- }
- /** returns true if second partial derivative of fint_cont
- * w.r.t. y,u is always zero. */
- virtual bool fint_cont_dydu_alwayszero() const
- {
- return false;
- }
- /** Forcing function for the elliptic equation */
- virtual Number d_cont(Number x1, Number x2, Number y, Number u) const
- {
- return y*(u + b_*y - a(x1,x2));
- }
- /** First partial derivative of forcing function w.r.t. y */
- virtual Number d_cont_dy(Number x1, Number x2, Number y, Number u) const
- {
- return (u + 2.*b_*y -a(x1,x2));
- }
- /** First partial derivative of forcing function w.r.t. u */
- virtual Number d_cont_du(Number x1, Number x2, Number y, Number u) const
- {
- return y;
- }
- /** Second partial derivative of forcing function w.r.t y,y */
- virtual Number d_cont_dydy(Number x1, Number x2, Number y, Number u) const
- {
- return 2.*b_;
- }
- /** returns true if second partial derivative of d_cont
- * w.r.t. y,y is always zero. */
- virtual bool d_cont_dydy_alwayszero() const
- {
- return false;
- }
- /** Second partial derivative of forcing function w.r.t. u,u */
- virtual Number d_cont_dudu(Number x1, Number x2, Number y, Number u) const
- {
- return 0.;
- }
- /** returns true if second partial derivative of d_cont
- * w.r.t. y,y is always zero. */
- virtual bool d_cont_dudu_alwayszero() const
- {
- return true;
- }
- /** Second partial derivative of forcing function w.r.t. y,u */
- virtual Number d_cont_dydu(Number x1, Number x2, Number y, Number u) const
- {
- return 1.;
- }
- /** returns true if second partial derivative of d_cont
- * w.r.t. y,u is always zero. */
- virtual bool d_cont_dydu_alwayszero() const
- {
- return false;
- }
- private:
- /**@name hide implicitly defined contructors copy operators */
- //@{
- MittelmannDistCntrlNeumA3(const MittelmannDistCntrlNeumA3&);
- MittelmannDistCntrlNeumA3& operator=(const MittelmannDistCntrlNeumA3&);
- //@}
- /** Value of pi (made available for convenience) */
- const Number pi_;
- /*@name constrants appearing in problem formulation */
- //@{
- const Number M_;
- const Number K_;
- const Number b_;
- //@}
- //* Auxiliary function for state equation */
- inline Number a(Number x1, Number x2) const
- {
- return 7. + 4.*sin(2.*pi_*x1*x2);
- }
- };
- #endif
|