123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459 |
- // Copyright (C) 2005, 2006 International Business Machines and others.
- // All Rights Reserved.
- // This code is published under the Eclipse Public License.
- //
- // $Id: MittelmannDistCntrlDiri.cpp 2005 2011-06-06 12:55:16Z stefan $
- //
- // Authors: Carl Laird, Andreas Waechter IBM 2004-11-05
- #include "MittelmannDistCntrlDiri.hpp"
- #ifdef HAVE_CASSERT
- # include <cassert>
- #else
- # ifdef HAVE_ASSERT_H
- # include <assert.h>
- # else
- # error "don't have header file for assert"
- # endif
- #endif
- using namespace Ipopt;
- /* Constructor. */
- MittelmannDistCntrlDiriBase::MittelmannDistCntrlDiriBase()
- :
- y_d_(NULL)
- {}
- MittelmannDistCntrlDiriBase::~MittelmannDistCntrlDiriBase()
- {
- delete [] y_d_;
- }
- void
- MittelmannDistCntrlDiriBase::SetBaseParameters(Index N, Number alpha, Number lb_y,
- Number ub_y, Number lb_u, Number ub_u,
- Number u_init)
- {
- N_ = N;
- h_ = 1./(N+1);
- hh_ = h_*h_;
- lb_y_ = lb_y;
- ub_y_ = ub_y;
- lb_u_ = lb_u;
- ub_u_ = ub_u;
- u_init_ = u_init;
- alpha_ = alpha;
- // Initialize the target profile variables
- delete [] y_d_;
- y_d_ = new Number[(N_+2)*(N_+2)];
- for (Index j=0; j<= N_+1; j++) {
- for (Index i=0; i<= N_+1; i++) {
- y_d_[y_index(i,j)] = y_d_cont(x1_grid(i),x2_grid(j));
- }
- }
- }
- bool MittelmannDistCntrlDiriBase::get_nlp_info(
- Index& n, Index& m, Index& nnz_jac_g,
- Index& nnz_h_lag, IndexStyleEnum& index_style)
- {
- // We for each of the N_+2 times N_+2 mesh points we have the value
- // of the functions y, and for each N_ tiems N_ interior mesh points
- // we have values for u
- n = (N_+2)*(N_+2) + N_*N_;
- // For each of the N_ times N_ interior mesh points we have the
- // discretized PDE.
- m = N_*N_;
- // y(i,j), y(i-1,j), y(i+1,j), y(i,j-1), y(i,j+1), u(i,j) for each
- // of the N_*N_ discretized PDEs
- nnz_jac_g = 6*N_*N_;
- // diagonal entry for each y(i,j) in the interior
- nnz_h_lag = N_*N_;
- if (alpha_>0.) {
- // and one entry for u(i,j) in the interior if alpha is not zero
- nnz_h_lag += N_*N_;
- }
- // We use the C indexing style for row/col entries (corresponding to
- // the C notation, starting at 0)
- index_style = C_STYLE;
- return true;
- }
- bool
- MittelmannDistCntrlDiriBase::get_bounds_info(Index n, Number* x_l, Number* x_u,
- Index m, Number* g_l, Number* g_u)
- {
- // Set overall bounds on the variables
- for (Index i=0; i<=N_+1; i++) {
- for (Index j=0; j<=N_+1; j++) {
- Index iy = y_index(i,j);
- x_l[iy] = lb_y_;
- x_u[iy] = ub_y_;
- }
- }
- for (Index i=1; i<=N_; i++) {
- for (Index j=1; j<=N_; j++) {
- Index iu = u_index(i,j);
- x_l[iu] = lb_u_;
- x_u[iu] = ub_u_;
- }
- }
- // Define the boundary condition on y as bounds
- for (Index i=0; i<=N_+1; i++) {
- x_l[y_index(i,0)] = 0.;
- x_u[y_index(i,0)] = 0.;
- }
- for (Index i=0; i<=N_+1; i++) {
- x_l[y_index(0,i)] = 0.;
- x_u[y_index(0,i)] = 0.;
- }
- for (Index i=0; i<=N_+1; i++) {
- x_l[y_index(i,N_+1)] = 0.;
- x_u[y_index(i,N_+1)] = 0.;
- }
- for (Index i=0; i<=N_+1; i++) {
- x_l[y_index(N_+1,i)] = 0.;
- x_u[y_index(N_+1,i)] = 0.;
- }
- // all discretized PDE constraints have right hand side zero
- for (Index i=0; i<m; i++) {
- g_l[i] = 0.;
- g_u[i] = 0.;
- }
- return true;
- }
- bool
- MittelmannDistCntrlDiriBase::get_starting_point(Index n, bool init_x, Number* x,
- bool init_z, Number* z_L, Number* z_U,
- Index m, bool init_lambda,
- Number* lambda)
- {
- // Here, we assume we only have starting values for x, if you code
- // your own NLP, you can provide starting values for the others if
- // you wish.
- assert(init_x == true);
- assert(init_z == false);
- assert(init_lambda == false);
- // set all y's to the perfect match with y_d
- for (Index i=0; i<= N_+1; i++) {
- for (Index j=0; j<= N_+1; j++) {
- x[y_index(i,j)] = y_d_[y_index(i,j)];
- // x[y_index(i,j)] += h_*x1_grid(i) + 2*h_*x2_grid(j);
- }
- }
- // Set the initial (constant) value for the u's
- for (Index i=1; i<= N_; i++) {
- for (Index j=1; j<= N_; j++) {
- x[u_index(i,j)] = u_init_;
- // x[u_index(i,j)] -= h_*x1_grid(i) + 2*h_*x2_grid(j);
- }
- }
- return true;
- }
- bool
- MittelmannDistCntrlDiriBase::get_scaling_parameters(Number& obj_scaling,
- bool& use_x_scaling, Index n, Number* x_scaling,
- bool& use_g_scaling, Index m, Number* g_scaling)
- {
- obj_scaling = 1./hh_;
- use_x_scaling = false;
- use_g_scaling = false;
- return true;
- }
- bool
- MittelmannDistCntrlDiriBase::eval_f(Index n, const Number* x,
- bool new_x, Number& obj_value)
- {
- // return the value of the objective function
- obj_value = 0.;
- for (Index i=1; i<=N_; i++) {
- for (Index j=1; j<= N_; j++) {
- Index iy = y_index(i,j);
- Number tmp = x[iy] - y_d_[iy];
- obj_value += tmp*tmp;
- }
- }
- obj_value *= hh_/2.;
- if (alpha_>0.) {
- Number usum = 0.;
- for (Index i=1; i<=N_; i++) {
- for (Index j=1; j<= N_; j++) {
- Index iu = u_index(i,j);
- usum += x[iu]*x[iu];
- }
- }
- obj_value += alpha_*hh_/2.*usum;
- }
- return true;
- }
- bool
- MittelmannDistCntrlDiriBase::eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f)
- {
- // return the gradient of the objective function grad_{x} f(x)
- // The values are zero for variables on the boundary
- for (Index i=0; i<= N_+1; i++) {
- grad_f[y_index(i,0)] = 0.;
- }
- for (Index i=0; i<= N_+1; i++) {
- grad_f[y_index(i,N_+1)] = 0.;
- }
- for (Index j=1; j<= N_; j++) {
- grad_f[y_index(0,j)] = 0.;
- }
- for (Index j=1; j<= N_; j++) {
- grad_f[y_index(N_+1,j)] = 0.;
- }
- // now let's take care of the nonzero values
- for (Index i=1; i<=N_; i++) {
- for (Index j=1; j<= N_; j++) {
- Index iy = y_index(i,j);
- grad_f[iy] = hh_*(x[iy] - y_d_[iy]);
- }
- }
- if (alpha_>0.) {
- for (Index i=1; i<=N_; i++) {
- for (Index j=1; j<= N_; j++) {
- Index iu = u_index(i,j);
- grad_f[iu] = alpha_*hh_*x[iu];
- }
- }
- }
- else {
- for (Index i=1; i<=N_; i++) {
- for (Index j=1; j<=N_; j++) {
- Index iu = u_index(i,j);
- grad_f[iu] = 0.;
- }
- }
- }
- return true;
- }
- bool MittelmannDistCntrlDiriBase::eval_g(Index n, const Number* x, bool new_x,
- Index m, Number* g)
- {
- // return the value of the constraints: g(x)
- // compute the discretized PDE for each interior grid point
- for (Index i=1; i<=N_; i++) {
- for (Index j=1; j<=N_; j++) {
- Number val;
- // Start with the discretized Laplacian operator
- val = 4.* x[y_index(i,j)]
- - x[y_index(i-1,j)] - x[y_index(i+1,j)]
- - x[y_index(i,j-1)] - x[y_index(i,j+1)];
- // Add the forcing term (including the step size here)
- val += hh_*d_cont(x1_grid(i), x2_grid(j),
- x[y_index(i,j)], x[u_index(i,j)]);
- g[pde_index(i,j)] = val;
- }
- }
- return true;
- }
- bool MittelmannDistCntrlDiriBase::eval_jac_g(Index n, const Number* x, bool new_x,
- Index m, Index nele_jac, Index* iRow, Index *jCol,
- Number* values)
- {
- if (values == NULL) {
- // return the structure of the jacobian of the constraints
- Index ijac = 0;
- for (Index i=1; i<= N_; i++) {
- for (Index j=1; j<= N_; j++) {
- Index ig = pde_index(i,j);
- // y(i,j)
- iRow[ijac] = ig;
- jCol[ijac] = y_index(i,j);
- ijac++;
- // y(i-1,j)
- iRow[ijac] = ig;
- jCol[ijac] = y_index(i-1,j);
- ijac++;
- // y(i+1,j)
- iRow[ijac] = ig;
- jCol[ijac] = y_index(i+1,j);
- ijac++;
- // y(i,j-1)
- iRow[ijac] = ig;
- jCol[ijac] = y_index(i,j-1);
- ijac++;
- // y(i,j+1)
- iRow[ijac] = ig;
- jCol[ijac] = y_index(i,j+1);
- ijac++;
- // u(i,j)
- iRow[ijac] = ig;
- jCol[ijac] = u_index(i,j);
- ijac++;
- }
- }
- DBG_ASSERT(ijac==nele_jac);
- }
- else {
- // return the values of the jacobian of the constraints
- Index ijac = 0;
- for (Index i=1; i<= N_; i++) {
- for (Index j=1; j<= N_; j++) {
- // y(i,j)
- values[ijac] = 4. + hh_*d_cont_dy(x1_grid(i), x2_grid(j),
- x[y_index(i,j)], x[u_index(i,j)]);
- ijac++;
- // y(i-1,j)
- values[ijac] = -1.;
- ijac++;
- // y(i+1,j)
- values[ijac] = -1.;
- ijac++;
- // y(1,j-1)
- values[ijac] = -1.;
- ijac++;
- // y(1,j+1)
- values[ijac] = -1.;
- ijac++;
- // y(i,j)
- values[ijac] = hh_*d_cont_du(x1_grid(i), x2_grid(j),
- x[y_index(i,j)], x[u_index(i,j)]);
- ijac++;
- }
- }
- DBG_ASSERT(ijac==nele_jac);
- }
- return true;
- }
- bool
- MittelmannDistCntrlDiriBase::eval_h(Index n, const Number* x, bool new_x,
- Number obj_factor, Index m,
- const Number* lambda,
- bool new_lambda, Index nele_hess, Index* iRow,
- Index* jCol, Number* values)
- {
- if (values == NULL) {
- // return the structure. This is a symmetric matrix, fill the lower left
- // triangle only.
- Index ihes=0;
- // First the diagonal entries for y(i,j)
- for (Index i=1; i<= N_; i++) {
- for (Index j=1; j<= N_; j++) {
- iRow[ihes] = y_index(i,j);
- jCol[ihes] = y_index(i,j);
- ihes++;
- }
- }
- if (alpha_>0.) {
- // Now the diagonal entries for u(i,j)
- for (Index i=1; i<= N_; i++) {
- for (Index j=1; j<= N_; j++) {
- iRow[ihes] = u_index(i,j);
- jCol[ihes] = u_index(i,j);
- ihes++;
- }
- }
- }
- DBG_ASSERT(ihes==nele_hess);
- }
- else {
- // return the values
- Index ihes=0;
- // First the diagonal entries for y(i,j)
- for (Index i=1; i<= N_; i++) {
- for (Index j=1; j<= N_; j++) {
- // Contribution from the objective function
- values[ihes] = obj_factor*hh_;
- // Contribution from the PDE constraint
- values[ihes] += lambda[pde_index(i,j)] * hh_ *
- d_cont_dydy(x1_grid(i), x2_grid(j),
- x[y_index(i,j)], x[u_index(i,j)]);
- ihes++;
- }
- }
- // Now the diagonal entries for u(i,j)
- if (alpha_>0.) {
- for (Index i=1; i<= N_; i++) {
- for (Index j=1; j<= N_; j++) {
- // Contribution from the objective function
- values[ihes] = obj_factor*hh_*alpha_;
- ihes++;
- }
- }
- }
- }
- return true;
- }
- void
- MittelmannDistCntrlDiriBase::finalize_solution(SolverReturn status,
- Index n, const Number* x, const Number* z_L, const Number* z_U,
- Index m, const Number* g, const Number* lambda, Number obj_value,
- const IpoptData* ip_data,
- IpoptCalculatedQuantities* ip_cq)
- {
- /*
- FILE* fp = fopen("solution.txt", "w+");
- for (Index i=0; i<=N_+1; i++) {
- for (Index j=0; j<=N_+1; j++) {
- fprintf(fp, "y[%6d,%6d] = %15.8e\n", i, j, x[y_index(i,j)]);
- }
- }
- for (Index i=1; i<=N_; i++) {
- for (Index j=1; j<=N_; j++) {
- fprintf(fp, "u[%6d,%6d] = %15.8e\n", i, j ,x[u_index(i,j)]);
- }
- }
- fclose(fp);
- */
- }
|