123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371 |
- // Copyright (C) 2005, 2006 International Business Machines and others.
- // All Rights Reserved.
- // This code is published under the Eclipse Public License.
- //
- // $Id: LuksanVlcek6.cpp 2005 2011-06-06 12:55:16Z stefan $
- //
- // Authors: Andreas Waechter IBM 2005-10-127
- #include "LuksanVlcek6.hpp"
- #ifdef HAVE_CONFIG_H
- #include "config.h"
- #else
- #include "configall_system.h"
- #endif
- #ifdef HAVE_CMATH
- # include <cmath>
- #else
- # ifdef HAVE_MATH_H
- # include <math.h>
- # else
- # error "don't have header file for math"
- # endif
- #endif
- #ifdef HAVE_CSTDIO
- # include <cstdio>
- #else
- # ifdef HAVE_STDIO_H
- # include <stdio.h>
- # else
- # error "don't have header file for stdio"
- # endif
- #endif
- using namespace Ipopt;
- inline static Index Sgn(Number a)
- {
- if (a>0.) {
- return 1;
- }
- else {
- return -1;
- }
- }
- LuksanVlcek6::LuksanVlcek6(Number g_l, Number g_u)
- {
- g_l_ = g_l;
- g_u_ = g_u;
- }
- bool LuksanVlcek6::InitializeProblem(Index N)
- {
- N_=N;
- if (2*(N_/2)!=N_ || N<=1) {
- printf("N needs to be even and at least 2.\n");
- return false;
- }
- return true;
- }
- // returns the size of the problem
- bool LuksanVlcek6::get_nlp_info(Index& n, Index& m, Index& nnz_jac_g,
- Index& nnz_h_lag, IndexStyleEnum& index_style)
- {
- // The problem described in LuksanVlcek6.hpp has 4 variables, x[0] through x[3]
- n = N_+1;
- m = N_/2;
- nnz_jac_g = 3 * m;
- nnz_h_lag = n + n-1 + n-2 + n-3 + n-4 + n-5 + n-6;
- // use the C style numbering of matrix indices (starting at 0)
- index_style = TNLP::C_STYLE;
- return true;
- }
- // returns the variable bounds
- bool LuksanVlcek6::get_bounds_info(Index n, Number* x_l, Number* x_u,
- Index m, Number* g_l, Number* g_u)
- {
- // none of the variables have bounds
- for (Index i=0; i<n; i++) {
- x_l[i] = -1e20;
- x_u[i] = 1e20;
- }
- // Set the bounds for the constraints
- for (Index i=0; i<m; i++) {
- g_l[i] = g_l_;
- g_u[i] = g_u_;
- }
- return true;
- }
- // returns the initial point for the problem
- bool LuksanVlcek6::get_starting_point(Index n, bool init_x, Number* x,
- bool init_z, Number* z_L, Number* z_U,
- Index m, bool init_lambda,
- Number* lambda)
- {
- if (!init_x || init_z || init_lambda) {
- return false;
- }
- // set the starting point
- for (Index i=0; i<n; i++) {
- x[i] = 3.;
- }
- /*
- // DELETEME
- for (Index i=0; i<n; i++) {
- x[i] += 0.1*((Number) i);
- }
- */
- return true;
- }
- // returns the value of the objective function
- bool LuksanVlcek6::eval_f(Index n, const Number* x, bool new_x, Number& obj_value)
- {
- Number p = 7./3.;
- obj_value = 0.;
- for (Index i=0; i<N_; i++) {
- Number b = (2.+5.*x[i]*x[i])*x[i] + 1.;
- for (Index j=Max(0,i-5); j<=Min(N_-1,i+1); j++) {
- b += x[j]*(1.+x[j]);
- }
- obj_value += pow(fabs(b),p);
- }
- return true;
- }
- // return the gradient of the objective function grad_{x} f(x)
- bool LuksanVlcek6::eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f)
- {
- Number p = 7./3.;
- grad_f[0] = 0.;
- for (Index i=0; i<N_; i++) {
- Number b = (2.+5.*x[i]*x[i])*x[i] + 1.;
- for (Index j=Max(0,i-5); j<=Min(N_-1,i+1); j++) {
- b += x[j]*(1.+x[j]);
- }
- Number pb1 = pow(fabs(b),p-1.);
- Number apb1 = p*Sgn(b)*pb1;
- for (Index j=Max(0,i-5); j<i; j++) {
- grad_f[j] += (1.+2.*x[j])*apb1;
- }
- grad_f[i] += (3. + 2.*x[i] + 15.*x[i]*x[i])*apb1;
- if (i<N_-1) {
- grad_f[i+1] = (1.+2.*x[i+1])*apb1;
- }
- }
- grad_f[n-1] = 0.;
- return true;
- }
- // return the value of the constraints: g(x)
- bool LuksanVlcek6::eval_g(Index n, const Number* x, bool new_x, Index m, Number* g)
- {
- for (Index i=0; i<N_/2; i++) {
- Number e = exp(x[2*i] - x[2*i+1] - x[2*i+2]);
- g[i] = 4.*x[2*i+1] - (x[2*i] - x[2*i+2])*e - 3;
- }
- return true;
- }
- // return the structure or values of the jacobian
- bool LuksanVlcek6::eval_jac_g(Index n, const Number* x, bool new_x,
- Index m, Index nele_jac, Index* iRow, Index *jCol,
- Number* values)
- {
- if (values == NULL) {
- // return the structure of the jacobian
- Index ijac = 0;
- for (Index i=0; i<N_/2; i++) {
- iRow[ijac] = i;
- jCol[ijac] = 2*i;
- ijac++;
- iRow[ijac] = i;
- jCol[ijac] = 2*i+1;
- ijac++;
- iRow[ijac] = i;
- jCol[ijac] = 2*i+2;
- ijac++;
- }
- DBG_ASSERT(ijac == nele_jac);
- }
- else {
- // return the values of the jacobian of the constraints
- Index ijac = 0;
- for (Index i=0; i<N_/2; i++) {
- Number e = exp(x[2*i] - x[2*i+1] - x[2*i+2]);
- Number a1 = (1. + x[2*i] - x[2*i+2])*e;
- values[ijac] = -a1;
- ijac++;
- values[ijac] = 4. + (x[2*i] - x[2*i+2])*e;
- ijac++;
- values[ijac] = a1;
- ijac++;
- }
- }
- return true;
- }
- //return the structure or values of the hessian
- bool LuksanVlcek6::eval_h(Index n, const Number* x, bool new_x,
- Number obj_factor, Index m, const Number* lambda,
- bool new_lambda, Index nele_hess, Index* iRow,
- Index* jCol, Number* values)
- {
- if (values == NULL) {
- Index ihes=0;
- // First the diagonal
- for (Index i=0; i<n; i++) {
- iRow[ihes] = i;
- jCol[ihes] = i;
- ihes++;
- }
- // 1st off-diagonal
- for (Index i=0; i<n-1; i++) {
- iRow[ihes] = i;
- jCol[ihes] = i+1;
- ihes++;
- }
- // 2nd off-diagonal
- for (Index i=0; i<n-2; i++) {
- iRow[ihes] = i;
- jCol[ihes] = i+2;
- ihes++;
- }
- // 3rd off-diagonal
- for (Index i=0; i<n-3; i++) {
- iRow[ihes] = i;
- jCol[ihes] = i+3;
- ihes++;
- }
- // 4th off-diagonal
- for (Index i=0; i<n-4; i++) {
- iRow[ihes] = i;
- jCol[ihes] = i+4;
- ihes++;
- }
- // 5th off-diagonal
- for (Index i=0; i<n-5; i++) {
- iRow[ihes] = i;
- jCol[ihes] = i+5;
- ihes++;
- }
- // 6th off-diagonal
- for (Index i=0; i<n-6; i++) {
- iRow[ihes] = i;
- jCol[ihes] = i+6;
- ihes++;
- }
- DBG_ASSERT(ihes == nele_hess);
- }
- else {
- Number p = 7./3.;
- // First the objective
- values[0] = 0.;
- for (Index i=0; i<N_; i++) {
- Number b = (2.+5.*x[i]*x[i])*x[i] + 1.;
- for (Index j=Max(0,i-5); j<=Min(N_-1,i+1); j++) {
- b += x[j]*(1.+x[j]);
- }
- Number pb1 = pow(fabs(b),p-1.);
- Number pb2 = pow(fabs(b),p-2.);
- Number apb1 = p*Sgn(b)*pb1;
- Number apb2 = p*(p-1.)*pb2;
- Number a1 = 3. + 2.*x[i] + 15.*x[i]*x[i];
- Number a1apb2 = apb2*a1;
- // x[i] x[i]
- values[i] += obj_factor*(a1apb2*a1 + apb1*(2. + 30.*x[i]));
- // x[i] x[j] j<i
- Index ih = n;
- Index ip = n-1;
- for (Index j=i-1; j>=Max(0,i-5); j--) {
- values[ih+j] += obj_factor*a1apb2*(1.+2.*x[j]);
- ih += ip;
- ip--;
- }
- for (Index j=Max(0,i-5); j<i; j++) {
- Number axj = (1.+2.*x[j]);
- // x[j] x[j] j<i
- values[j] += obj_factor*(apb2*axj*axj + 2.*apb1);
- ih = n;
- ip = n-1;
- // x[j] x[k] j<i, k<j
- for (Index k=j-1; k>=Max(0,i-5); k--) {
- values[ih+k] += obj_factor*apb2*(1.+2.*x[k])*axj;
- ih += ip;
- ip--;
- }
- }
- if (i<N_-1) {
- Number axj = (1.+2.*x[i+1]);
- // x[i] x[i+1]
- values[n+i] = obj_factor*a1apb2*axj;
- // x[j=i+1] x[k] k<i
- ih = n+n-1;
- ip = n-2;
- for (Index k=i-1; k>=Max(0,i-5); k--) {
- values[ih+k] = obj_factor*apb2*(1.+2.*x[k])*axj;
- ih += ip;
- ip--;
- }
- // x[j=i+1] x[k=i+1]
- values[i+1] = obj_factor*(apb2*axj*axj+ 2.*apb1);
- }
- else {
- // We could just not set those non-zero elements in the
- // structure, but I'm too lazy to do that now
- values[n+i] = 0.;
- ih = n+n-1;
- ip = n-2;
- for (Index k=i-1; k>=Max(0,i-5); k--) {
- values[ih+k] = 0.;
- ih += ip;
- ip--;
- }
- // x[j=i+1] x[k=i+1]
- values[i+1] = 0.;
- }
- }
- // Now the constraints
- for (Index i=0; i<N_/2; i++) {
- Number e = exp(x[2*i] - x[2*i+1] - x[2*i+2]);
- Number a1 = 1. + x[2*i] - x[2*i+2];
- Number a2 = 1. + a1;
- // x[2*i] x[2*i]
- values[2*i] -= lambda[i]*a2*e;
- // x[2*i] x[2*i+1]
- values[n+2*i] += lambda[i]*a1*e;
- // x[2*i] x[2*i+2]
- values[n+(n-1)+2*i] += lambda[i]*a2*e;
- // x[2*i+1] x[2*i+1]
- values[2*i+1] -= lambda[i]*(x[2*i]-x[2*i+2])*e;
- // x[2*i+1] x[2*i+2]
- values[n+2*i+1] -= lambda[i]*a1*e;
- // x[2*i+2] x[2*i+2]
- values[2*i+2] -= lambda[i]*a2*e;
- }
- }
- return true;
- }
- void LuksanVlcek6::finalize_solution(SolverReturn status,
- Index n, const Number* x, const Number* z_L, const Number* z_U,
- Index m, const Number* g, const Number* lambda,
- Number obj_value,
- const IpoptData* ip_data,
- IpoptCalculatedQuantities* ip_cq)
- {}
|