123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278 |
- // Copyright (C) 2005, 2006 International Business Machines and others.
- // All Rights Reserved.
- // This code is published under the Eclipse Public License.
- //
- // $Id: LuksanVlcek2.cpp 2005 2011-06-06 12:55:16Z stefan $
- //
- // Authors: Andreas Waechter IBM 2005-10-127
- #include "LuksanVlcek2.hpp"
- #ifdef HAVE_CONFIG_H
- #include "config.h"
- #else
- #include "configall_system.h"
- #endif
- #ifdef HAVE_CMATH
- # include <cmath>
- #else
- # ifdef HAVE_MATH_H
- # include <math.h>
- # else
- # error "don't have header file for math"
- # endif
- #endif
- #ifdef HAVE_CSTDIO
- # include <cstdio>
- #else
- # ifdef HAVE_STDIO_H
- # include <stdio.h>
- # else
- # error "don't have header file for stdio"
- # endif
- #endif
- using namespace Ipopt;
- LuksanVlcek2::LuksanVlcek2(Number g_l, Number g_u)
- {
- g_l_ = g_l;
- g_u_ = g_u;
- }
- bool LuksanVlcek2::InitializeProblem(Index N)
- {
- N_=N;
- if (N_<=13 || 2*(N_/2)!=N_) {
- printf("N needs to be at least 14 and even.\n");
- return false;
- }
- return true;
- }
- // returns the size of the problem
- bool LuksanVlcek2::get_nlp_info(Index& n, Index& m, Index& nnz_jac_g,
- Index& nnz_h_lag, IndexStyleEnum& index_style)
- {
- // The problem described in LuksanVlcek2.hpp has 4 variables, x[0]
- // through x[3]
- n = N_+2;
- m = N_-7;
- nnz_jac_g = 25 + (m-5)*8;
- nnz_h_lag = n + N_ + 1;
- // use the C style numbering of matrix indices (starting at 0)
- index_style = TNLP::C_STYLE;
- return true;
- }
- // returns the variable bounds
- bool LuksanVlcek2::get_bounds_info(Index n, Number* x_l, Number* x_u,
- Index m, Number* g_l, Number* g_u)
- {
- // none of the variables have bounds
- for (Index i=0; i<n; i++) {
- x_l[i] = -1e20;
- x_u[i] = 1e20;
- }
- // Set the bounds for the constraints
- for (Index i=0; i<m; i++) {
- g_l[i] = g_l_;
- g_u[i] = g_u_;
- }
- return true;
- }
- // returns the initial point for the problem
- bool LuksanVlcek2::get_starting_point(Index n, bool init_x, Number* x,
- bool init_z, Number* z_L, Number* z_U,
- Index m, bool init_lambda,
- Number* lambda)
- {
- if (!init_x || init_z || init_lambda) {
- return false;
- }
- // set the starting point
- for (Index i=0; i<n/2; i++) {
- x[2*i] = -2.;
- x[2*i+1] = 1.;
- }
- /*
- // DELETEME
- for (Index i=0; i<n; i++) {
- x[i] += 0.1*((Number) i);
- }
- */
- return true;
- }
- // returns the value of the objective function
- bool LuksanVlcek2::eval_f(Index n, const Number* x, bool new_x, Number& obj_value)
- {
- obj_value = 0.;
- for (Index i=0; i<N_/2; i++) {
- Number a1 = x[2*i]*x[2*i] - x[2*i+1];
- Number a2 = x[2*i] - 1.;
- Number a3 = x[2*i+2]*x[2*i+2] - x[2*i+3];
- Number a4 = x[2*i+2] - 1.;
- Number a5 = x[2*i+1] + x[2*i+3] - 2.;
- Number a6 = x[2*i+1] - x[2*i+3];
- obj_value += 100.*a1*a1 + a2*a2 + 90.*a3*a3 + a4*a4 + 10.*a5*a5 + .1*a6*a6;
- }
- return true;
- }
- // return the gradient of the objective function grad_{x} f(x)
- bool LuksanVlcek2::eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f)
- {
- grad_f[0] = 0.;
- grad_f[1] = 0.;
- for (Index i=0; i<N_/2; i++) {
- grad_f[2*i] += 400.*x[2*i]*(x[2*i]*x[2*i]-x[2*i+1]) + 2.*(x[2*i]-1.);
- grad_f[2*i+1] += -200.*(x[2*i]*x[2*i]-x[2*i+1])
- + 20*(x[2*i+1] + x[2*i+3] - 2.)
- + 0.2*(x[2*i+1] - x[2*i+3]);
- grad_f[2*i+2] = 360.*x[2*i+2]*(x[2*i+2]*x[2*i+2] - x[2*i+3])
- + 2.*(x[2*i+2] -1.);
- grad_f[2*i+3] = -180.*(x[2*i+2]*x[2*i+2] - x[2*i+3])
- + 20.*(x[2*i+1] + x[2*i+3] -2.)
- - 0.2*(x[2*i+1] - x[2*i+3]);
- }
- return true;
- }
- // return the value of the constraints: g(x)
- bool LuksanVlcek2::eval_g(Index n, const Number* x, bool new_x, Index m, Number* g)
- {
- for (Index i=0; i<N_-7; i++) {
- g[i] = (2.+5.*x[i+5]*x[i+5])*x[i+5] + 1.;
- for (Index k=Max(0,i-5); k<=i+1; k++) {
- g[i] += x[k]*(x[k]+1.);
- }
- }
- return true;
- }
- // return the structure or values of the jacobian
- bool LuksanVlcek2::eval_jac_g(Index n, const Number* x, bool new_x,
- Index m, Index nele_jac, Index* iRow, Index *jCol,
- Number* values)
- {
- if (values == NULL) {
- // return the structure of the jacobian
- Index ijac=0;
- for (Index i=0; i<N_-7; i++) {
- for (Index k=Max(0,i-5); k<=i+1; k++) {
- iRow[ijac] = i;
- jCol[ijac] = k;
- ijac++;
- }
- iRow[ijac] = i;
- jCol[ijac] = i+5;
- ijac++;
- }
- DBG_ASSERT(ijac == nele_jac);
- }
- else {
- // return the values of the jacobian of the constraints
- Index ijac=0;
- for (Index i=0; i<N_-7; i++) {
- for (Index k=Max(0,i-5); k<=i+1; k++) {
- values[ijac] = 2.*x[k] + 1.;
- ijac++;
- }
- values[ijac] = 2. + 15.*x[i+5]*x[i+5];
- ijac++;
- }
- }
- return true;
- }
- //return the structure or values of the hessian
- bool LuksanVlcek2::eval_h(Index n, const Number* x, bool new_x,
- Number obj_factor, Index m, const Number* lambda,
- bool new_lambda, Index nele_hess, Index* iRow,
- Index* jCol, Number* values)
- {
- if (values == NULL) {
- Index ihes=0;
- // First the diagonal elements
- for (Index i=0; i<n; i++) {
- iRow[ihes] = i;
- jCol[ihes] = i;
- ihes++;
- }
- // And now the off-diagonal elements
- for (Index i=0; i<N_/2; i++) {
- iRow[ihes] = 2*i;
- jCol[ihes] = 2*i+1;
- ihes++;
- iRow[ihes] = 2*i+1;
- jCol[ihes] = 2*i+3;
- ihes++;
- }
- iRow[ihes] = n-2;
- jCol[ihes] = n-1;
- ihes++;
- DBG_ASSERT(ihes == nele_hess);
- }
- else {
- // First we take care of the diagonal elements coming from the
- // objective function
- values[0] = 0.;
- values[1] = 0.;
- for (Index i=0; i<N_/2; i++) {
- values[2*i] += obj_factor*(1200.*x[2*i]*x[2*i] - 400.*x[2*i+1] + 2.);
- values[2*i+1] += obj_factor*220.2;
- values[2*i+2] = obj_factor*(1080.*x[2*i+2]*x[2*i+2] - 360*x[2*i+3] + 2.);
- values[2*i+3] = obj_factor*200.2;
- }
- // Now we take care of the off-diagonal elements coming from the
- // objective function
- Index ihes = n;
- values[ihes] = 0.;
- for (Index i=0; i<N_/2; i++) {
- values[ihes] += obj_factor*(-400.*x[2*i]);
- ihes++;
- values[ihes] = obj_factor*19.8;
- ihes++;
- values[ihes] = obj_factor*(-360.*x[2*i+2]);
- }
- // Ok, now the diagonal elements from the constraints
- for (Index i=0; i<N_-7; i++) {
- for (Index k=Max(0,i-5); k<=i+1; k++) {
- values[k] += lambda[i]*2.;
- }
- values[i+5] += lambda[i]*30.*x[i+5];
- }
- }
- return true;
- }
- void LuksanVlcek2::finalize_solution(SolverReturn status,
- Index n, const Number* x, const Number* z_L, const Number* z_U,
- Index m, const Number* g, const Number* lambda,
- Number obj_value,
- const IpoptData* ip_data,
- IpoptCalculatedQuantities* ip_cq)
- {}
|