123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289 |
- // Copyright (C) 2005, 2006 International Business Machines and others.
- // All Rights Reserved.
- // This code is published under the Eclipse Public License.
- //
- // $Id: LuksanVlcek1.cpp 2005 2011-06-06 12:55:16Z stefan $
- //
- // Authors: Andreas Waechter IBM 2005-10-127
- #include "LuksanVlcek1.hpp"
- #ifdef HAVE_CONFIG_H
- #include "config.h"
- #else
- #include "configall_system.h"
- #endif
- #ifdef HAVE_CMATH
- # include <cmath>
- #else
- # ifdef HAVE_MATH_H
- # include <math.h>
- # else
- # error "don't have header file for math"
- # endif
- #endif
- #ifdef HAVE_CSTDIO
- # include <cstdio>
- #else
- # ifdef HAVE_STDIO_H
- # include <stdio.h>
- # else
- # error "don't have header file for stdio"
- # endif
- #endif
- using namespace Ipopt;
- LuksanVlcek1::LuksanVlcek1(Number g_l, Number g_u)
- {
- g_l_ = g_l;
- g_u_ = g_u;
- }
- bool LuksanVlcek1::InitializeProblem(Index N)
- {
- N_=N;
- if (N_<=2) {
- printf("N needs to be at least 3.\n");
- return false;
- }
- return true;
- }
- // returns the size of the problem
- bool LuksanVlcek1::get_nlp_info(Index& n, Index& m, Index& nnz_jac_g,
- Index& nnz_h_lag, IndexStyleEnum& index_style)
- {
- // The problem described in LuksanVlcek1.hpp has 4 variables, x[0] through x[3]
- n = N_;
- m = N_-2;
- nnz_jac_g = m*3;
- nnz_h_lag = n + n-1;
- // use the C style numbering of matrix indices (starting at 0)
- index_style = TNLP::C_STYLE;
- return true;
- }
- // returns the variable bounds
- bool LuksanVlcek1::get_bounds_info(Index n, Number* x_l, Number* x_u,
- Index m, Number* g_l, Number* g_u)
- {
- // none of the variables have bounds
- for (Index i=0; i<n; i++) {
- x_l[i] = -1e20;
- x_u[i] = 1e20;
- }
- // Set the bounds for the constraints
- for (Index i=0; i<m; i++) {
- g_l[i] = g_l_;
- g_u[i] = g_u_;
- }
- return true;
- }
- // returns the initial point for the problem
- bool LuksanVlcek1::get_starting_point(Index n, bool init_x, Number* x,
- bool init_z, Number* z_L, Number* z_U,
- Index m, bool init_lambda,
- Number* lambda)
- {
- if (!init_x || init_z || init_lambda) {
- return false;
- }
- // set the starting point
- for (Index i=0; i<n/2; i++) {
- x[2*i] = -1.2;
- x[2*i+1] = 1.;
- }
- if (n != 2*(n/2)) {
- x[n-1] = -1.2;
- }
- /*
- // DELETEME
- for (Index i=0; i<n; i++) {
- x[i] += 0.001*((Number) i);
- }
- */
- return true;
- }
- // returns the value of the objective function
- bool LuksanVlcek1::eval_f(Index n, const Number* x, bool new_x, Number& obj_value)
- {
- obj_value = 0.;
- for (Index i=0; i<N_-1; i++) {
- Number a1 = x[i]*x[i]-x[i+1];
- Number a2 = x[i] - 1.;
- obj_value += 100.*a1*a1 + a2*a2;
- }
- return true;
- }
- // return the gradient of the objective function grad_{x} f(x)
- bool LuksanVlcek1::eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f)
- {
- grad_f[0] = 0.;
- for (Index i=0; i<N_-1; i++) {
- grad_f[i] += 400.*x[i]*(x[i]*x[i]-x[i+1]) + 2.*(x[i]-1.);
- grad_f[i+1] = -200.*(x[i]*x[i]-x[i+1]);
- }
- return true;
- }
- // return the value of the constraints: g(x)
- bool LuksanVlcek1::eval_g(Index n, const Number* x, bool new_x, Index m, Number* g)
- {
- for (Index i=0; i<N_-2; i++) {
- g[i] = 3.*pow(x[i+1],3.) + 2.*x[i+2] - 5.
- + sin(x[i+1]-x[i+2])*sin(x[i+1]+x[i+2]) + 4.*x[i+1]
- - x[i]*exp(x[i]-x[i+1]) - 3.;
- }
- return true;
- }
- // return the structure or values of the jacobian
- bool LuksanVlcek1::eval_jac_g(Index n, const Number* x, bool new_x,
- Index m, Index nele_jac, Index* iRow, Index *jCol,
- Number* values)
- {
- if (values == NULL) {
- // return the structure of the jacobian
- Index ijac=0;
- for (Index i=0; i<N_-2; i++) {
- iRow[ijac] = i;
- jCol[ijac] = i;
- ijac++;
- iRow[ijac] = i;
- jCol[ijac] = i+1;
- ijac++;
- iRow[ijac] = i;
- jCol[ijac] = i+2;
- ijac++;
- }
- }
- else {
- // return the values of the jacobian of the constraints
- Index ijac=0;
- for (Index i=0; i<N_-2; i++) {
- // x[i]
- values[ijac] = -(1.+x[i])*exp(x[i]-x[i+1]);
- ijac++;
- // x[i+1]
- values[ijac] = 9.*x[i+1]*x[i+1]
- + cos(x[i+1]-x[i+2])*sin(x[i+1]+x[i+2])
- + sin(x[i+1]-x[i+2])*cos(x[i+1]+x[i+2])
- + 4. + x[i]*exp(x[i]-x[i+1]);
- ijac++;
- // x[i+2]
- values[ijac] = 2.
- - cos(x[i+1]-x[i+2])*sin(x[i+1]+x[i+2])
- + sin(x[i+1]-x[i+2])*cos(x[i+1]+x[i+2]);
- ijac++;
- }
- }
- return true;
- }
- //return the structure or values of the hessian
- bool LuksanVlcek1::eval_h(Index n, const Number* x, bool new_x,
- Number obj_factor, Index m, const Number* lambda,
- bool new_lambda, Index nele_hess, Index* iRow,
- Index* jCol, Number* values)
- {
- if (values == NULL) {
- Index ihes=0;
- for (Index i=0; i<N_; i++) {
- iRow[ihes] = i;
- jCol[ihes] = i;
- ihes++;
- if (i<N_-1) {
- iRow[ihes] = i;
- jCol[ihes] = i+1;
- ihes++;
- }
- }
- DBG_ASSERT(ihes == nele_hess);
- }
- else {
- Index ihes=0;
- for (Index i=0; i<N_; i++) {
- // x[i],x[i]
- if (i<N_-1) {
- values[ihes] = obj_factor*(2.+400.*(3.*x[i]*x[i]-x[i+1]));
- if (i<N_-2) {
- values[ihes] -= lambda[i]*(2.+x[i])*exp(x[i]-x[i+1]);
- }
- }
- else {
- values[ihes] = 0.;
- }
- if (i>0) {
- // x[i+1]x[i+1]
- values[ihes] += obj_factor*200.;
- if (i<N_-1) {
- values[ihes] += lambda[i-1]*(18.*x[i]
- - 2.*sin(x[i]-x[i+1])*sin(x[i]+x[i+1])
- + 2.*cos(x[i]-x[i+1])*cos(x[i]+x[i+1])
- - x[i-1]*exp(x[i-1]-x[i]));
- }
- }
- if (i>1) {
- // x[i+2]x[i+2]
- values[ihes] +=
- lambda[i-2]*(- 2.*sin(x[i-1]-x[i])*sin(x[i-1]+x[i])
- - 2.*cos(x[i-1]-x[i])*cos(x[i-1]+x[i]));
- }
- ihes++;
- if (i<N_-1) {
- // x[i],x[i+1]
- values[ihes] = obj_factor*(-400.*x[i]);
- if (i<N_-2) {
- values[ihes] += lambda[i]*(1.+x[i])*exp(x[i]-x[i+1]);
- }
- /*
- if (i>0) {
- // x[i+1],x[i+2]
- values[ihes] +=
- lambda[i-1]*( sin(x[i]-x[i+1])*sin(x[i]+x[i+1])
- + cos(x[i]-x[i+1])*cos(x[i]+x[i+1])
- - cos(x[i]-x[i+1])*cos(x[i]+x[i+1])
- - sin(x[i]-x[i+1])*sin(x[i]+x[i+1])
- );
- }
- */
- ihes++;
- }
- }
- DBG_ASSERT(ihes == nele_hess);
- }
- return true;
- }
- void LuksanVlcek1::finalize_solution(SolverReturn status,
- Index n, const Number* x, const Number* z_L, const Number* z_U,
- Index m, const Number* g, const Number* lambda,
- Number obj_value,
- const IpoptData* ip_data,
- IpoptCalculatedQuantities* ip_cq)
- {}
|