123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- // Copyright 2011-2017 Ryan Curtin (http://www.ratml.org/)
- // Copyright 2017 National ICT Australia (NICTA)
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // ------------------------------------------------------------------------
- #include <armadillo>
- #include "catch.hpp"
- using namespace arma;
- TEST_CASE("fn_eigs_test")
- {
- for (size_t trial = 0; trial < 10; ++trial)
- {
- // Test ARPACK decomposition of sparse matrices.
- sp_mat m(1000, 1000);
- sp_vec dd;
- for (size_t i = 0; i < 10; ++i)
- {
- dd.sprandu(1000, 1, 0.15);
- double eig = rand();
- m += eig * dd * dd.t();
- }
- mat d(m);
- // Eigendecompose, getting first 5 eigenvectors.
- vec sp_eigval;
- mat sp_eigvec;
- eigs_sym(sp_eigval, sp_eigvec, m, 5);
- // Do the same for the dense case.
- vec eigval;
- mat eigvec;
- eig_sym(eigval, eigvec, d);
- for (uword i = 0; i < 5; ++i)
- {
- // It may be pointed the wrong direction.
- REQUIRE( sp_eigval[i] == Approx(eigval[i + 995]).epsilon(0.01) );
- for (uword j = 0; j < 1000; ++j)
- {
- REQUIRE( std::abs(sp_eigvec(j, i)) ==
- Approx(std::abs(eigvec(j, i + 995))).epsilon(0.01) );
- }
- }
- }
- }
- TEST_CASE("fn_eigs_float_test")
- {
- for (size_t trial = 0; trial < 10; ++trial)
- {
- // Test ARPACK decomposition of sparse matrices.
- SpMat<float> m(100, 100);
- SpCol<float> dd;
- for (size_t i = 0; i < 10; ++i)
- {
- dd.sprandu(100, 1, 0.15);
- float eig = rand();
- m += 0.000001 * eig * dd * dd.t();
- }
- Mat<float> d(m);
- // Eigendecompose, getting first 5 eigenvectors.
- Col<float> sp_eigval;
- Mat<float> sp_eigvec;
- eigs_sym(sp_eigval, sp_eigvec, m, 5);
- // Do the same for the dense case.
- Col<float> eigval;
- Mat<float> eigvec;
- eig_sym(eigval, eigvec, d);
- for (uword i = 0; i < 5; ++i)
- {
- // It may be pointed the wrong direction.
- REQUIRE( sp_eigval[i] == Approx(eigval[i + 95]).epsilon(0.01) );
- for (uword j = 0; j < 100; ++j)
- {
- REQUIRE(std::abs(sp_eigvec(j, i)) ==
- Approx(std::abs(eigvec(j, i + 95))).epsilon(0.01) );
- }
- }
- }
- }
- TEST_CASE("fn_eigs_sm_test")
- {
- for (size_t trial = 0; trial < 10; ++trial)
- {
- // Test ARPACK decomposition of sparse matrices.
- sp_mat m(100, 100);
- sp_vec dd;
- for (uword i = 0; i < 100; ++i)
- {
- m(i, i) = i + 10;
- }
- mat d(m);
- // Eigendecompose, getting first 5 eigenvectors.
- vec sp_eigval;
- mat sp_eigvec;
- eigs_sym(sp_eigval, sp_eigvec, m, 5, "sm");
- // Do the same for the dense case.
- vec eigval;
- mat eigvec;
- eig_sym(eigval, eigvec, d);
- for (size_t i = 0; i < 5; ++i)
- {
- // It may be pointed the wrong direction.
- REQUIRE( sp_eigval[i] == Approx(eigval[i]).epsilon(0.01) );
- for (size_t j = 0; j < 100; ++j)
- {
- REQUIRE( std::abs(sp_eigvec(j, i)) ==
- Approx(std::abs(eigvec(j, i))).epsilon(0.01) );
- }
- }
- }
- }
|