123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453 |
- // Copyright 2011-2017 Ryan Curtin (http://www.ratml.org/)
- // Copyright 2017 National ICT Australia (NICTA)
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // ------------------------------------------------------------------------
- #include <armadillo>
- #include "catch.hpp"
- using namespace arma;
- TEST_CASE("fn_eigs_gen_odd_test")
- {
- const uword n_rows = 10;
- const uword n_eigval = 5;
- for (size_t trial = 0; trial < 10; ++trial)
- {
- sp_mat m;
- m.sprandu(n_rows, n_rows, 0.3);
- mat d(m);
- // Eigendecompose, getting first 5 eigenvectors.
- Col< std::complex<double> > sp_eigval;
- Mat< std::complex<double> > sp_eigvec;
- eigs_gen(sp_eigval, sp_eigvec, m, n_eigval);
- // Do the same for the dense case.
- Col< std::complex<double> > eigval;
- Mat< std::complex<double> > eigvec;
- eig_gen(eigval, eigvec, d);
- uvec used(n_rows);
- used.fill(0);
- for (size_t i = 0; i < n_eigval; ++i)
- {
- // Sorting these is difficult.
- // Find which one is the likely dense eigenvalue.
- uword dense_eval = n_rows + 1;
- for (uword k = 0; k < n_rows; ++k)
- {
- if ((std::abs(std::complex<double>(sp_eigval[i]).real() - eigval[k].real()) < 1e-4) &&
- (std::abs(std::complex<double>(sp_eigval[i]).imag() - eigval[k].imag()) < 1e-4) &&
- (used[k] == 0))
- {
- dense_eval = k;
- used[k] = 1;
- break;
- }
- }
- REQUIRE( dense_eval != n_rows + 1 );
- REQUIRE( std::abs(sp_eigval[i]) == Approx(std::abs(eigval[dense_eval])).epsilon(0.1) );
- for (uword j = 0; j < n_rows; ++j)
- {
- REQUIRE( std::abs(sp_eigvec(j, i)) == Approx(std::abs(eigvec(j, dense_eval))).epsilon(0.1) );
- }
- }
- }
- }
- TEST_CASE("fn_eigs_gen_even_test")
- {
- const uword n_rows = 10;
- const uword n_eigval = 4;
- for (size_t trial = 0; trial < 10; ++trial)
- {
- sp_mat m;
- m.sprandu(n_rows, n_rows, 0.3);
- sp_mat z(5, 5);
- z.sprandu(5, 5, 0.5);
- m.submat(2, 2, 6, 6) += 5 * z;
- mat d(m);
- // Eigendecompose, getting first 4 eigenvectors.
- Col< std::complex<double> > sp_eigval;
- Mat< std::complex<double> > sp_eigvec;
- eigs_gen(sp_eigval, sp_eigvec, m, n_eigval);
- // Do the same for the dense case.
- Col< std::complex<double> > eigval;
- Mat< std::complex<double> > eigvec;
- eig_gen(eigval, eigvec, d);
- uvec used(n_rows);
- used.fill(0);
- for (size_t i = 0; i < n_eigval; ++i)
- {
- // Sorting these is difficult.
- // Find which one is the likely dense eigenvalue.
- uword dense_eval = n_rows + 1;
- for (uword k = 0; k < n_rows; ++k)
- {
- if ((std::abs(std::complex<double>(sp_eigval[i]).real() - eigval[k].real()) < 1e-4) &&
- (std::abs(std::complex<double>(sp_eigval[i]).imag() - eigval[k].imag()) < 1e-4) &&
- (used[k] == 0))
- {
- dense_eval = k;
- used[k] = 1;
- break;
- }
- }
- REQUIRE( dense_eval != n_rows + 1 );
- REQUIRE( std::abs(sp_eigval[i]) == Approx(std::abs(eigval[dense_eval])).epsilon(0.01) );
- for (uword j = 0; j < n_rows; ++j)
- {
- REQUIRE( std::abs(sp_eigvec(j, i)) == Approx(std::abs(eigvec(j, dense_eval))).epsilon(0.01) );
- }
- }
- }
- }
- TEST_CASE("fn_eigs_gen_odd_float_test")
- {
- const uword n_rows = 10;
- const uword n_eigval = 5;
- for (size_t trial = 0; trial < 10; ++trial)
- {
- SpMat<float> m;
- m.sprandu(n_rows, n_rows, 0.3);
- for (uword i = 0; i < n_rows; ++i)
- {
- m(i, i) += 5 * double(i) / double(n_rows);
- }
- Mat<float> d(m);
- // Eigendecompose, getting first 5 eigenvectors.
- Col< std::complex<float> > sp_eigval;
- Mat< std::complex<float> > sp_eigvec;
- eigs_gen(sp_eigval, sp_eigvec, m, n_eigval);
- // Do the same for the dense case.
- Col< std::complex<float> > eigval;
- Mat< std::complex<float> > eigvec;
- eig_gen(eigval, eigvec, d);
- uvec used(n_rows);
- used.fill(0);
- for (size_t i = 0; i < n_eigval; ++i)
- {
- // Sorting these is difficult.
- // Find which one is the likely dense eigenvalue.
- uword dense_eval = n_rows + 1;
- for (uword k = 0; k < n_rows; ++k)
- {
- if ((std::abs(std::complex<float>(sp_eigval[i]).real() - eigval[k].real()) < 0.001) &&
- (std::abs(std::complex<float>(sp_eigval[i]).imag() - eigval[k].imag()) < 0.001) &&
- (used[k] == 0))
- {
- dense_eval = k;
- used[k] = 1;
- break;
- }
- }
- REQUIRE( dense_eval != n_rows + 1 );
- REQUIRE( std::abs(sp_eigval[i]) == Approx(std::abs(eigval[dense_eval])).epsilon(0.001) );
- for (uword j = 0; j < n_rows; ++j)
- {
- REQUIRE( std::abs(sp_eigvec(j, i)) == Approx(std::abs(eigvec(j, dense_eval))).epsilon(0.01) );
- }
- }
- }
- }
- TEST_CASE("fn_eigs_gen_even_float_test")
- {
- const uword n_rows = 12;
- const uword n_eigval = 8;
- for (size_t trial = 0; trial < 10; ++trial)
- {
- SpMat<float> m;
- m.sprandu(n_rows, n_rows, 0.3);
- for (uword i = 0; i < n_rows; ++i)
- {
- m(i, i) += 5 * double(i) / double(n_rows);
- }
- Mat<float> d(m);
- // Eigendecompose, getting first 8 eigenvectors.
- Col< std::complex<float> > sp_eigval;
- Mat< std::complex<float> > sp_eigvec;
- eigs_gen(sp_eigval, sp_eigvec, m, n_eigval);
- // Do the same for the dense case.
- Col< std::complex<float> > eigval;
- Mat< std::complex<float> > eigvec;
- eig_gen(eigval, eigvec, d);
- uvec used(n_rows);
- used.fill(0);
- for (size_t i = 0; i < n_eigval; ++i)
- {
- // Sorting these is difficult.
- // Find which one is the likely dense eigenvalue.
- uword dense_eval = n_rows + 1;
- for (uword k = 0; k < n_rows; ++k)
- {
- if ((std::abs(std::complex<float>(sp_eigval[i]).real() - eigval[k].real()) < 0.001) &&
- (std::abs(std::complex<float>(sp_eigval[i]).imag() - eigval[k].imag()) < 0.001) &&
- (used[k] == 0))
- {
- dense_eval = k;
- used[k] = 1;
- break;
- }
- }
- REQUIRE( dense_eval != n_rows + 1 );
- REQUIRE( std::abs(sp_eigval[i]) == Approx(std::abs(eigval[dense_eval])).epsilon(0.01) );
- for (uword j = 0; j < n_rows; ++j)
- {
- REQUIRE( std::abs(sp_eigvec(j, i)) == Approx(std::abs(eigvec(j, dense_eval))).epsilon(0.01) );
- }
- }
- }
- }
- TEST_CASE("fn_eigs_gen_odd_complex_float_test")
- {
- const uword n_rows = 10;
- const uword n_eigval = 5;
- for (size_t trial = 0; trial < 10; ++trial)
- {
- SpMat< std::complex<float> > m;
- m.sprandu(n_rows, n_rows, 0.3);
- Mat< std::complex<float> > d(m);
- // Eigendecompose, getting first 5 eigenvectors.
- Col< std::complex<float> > sp_eigval;
- Mat< std::complex<float> > sp_eigvec;
- eigs_gen(sp_eigval, sp_eigvec, m, n_eigval);
- // Do the same for the dense case.
- Col< std::complex<float> > eigval;
- Mat< std::complex<float> > eigvec;
- eig_gen(eigval, eigvec, d);
- uvec used(n_rows);
- used.fill(0);
- for (size_t i = 0; i < n_eigval; ++i)
- {
- // Sorting these is difficult.
- // Find which one is the likely dense eigenvalue.
- uword dense_eval = n_rows + 1;
- for (uword k = 0; k < n_rows; ++k)
- {
- if ((std::abs(std::complex<float>(sp_eigval[i]).real() - eigval[k].real()) < 0.001) &&
- (std::abs(std::complex<float>(sp_eigval[i]).imag() - eigval[k].imag()) < 0.001) &&
- (used[k] == 0))
- {
- dense_eval = k;
- used[k] = 1;
- break;
- }
- }
- REQUIRE( dense_eval != n_rows + 1 );
- REQUIRE( std::abs(sp_eigval[i]) == Approx(std::abs(eigval[dense_eval])).epsilon(0.01) );
- for (uword j = 0; j < n_rows; ++j)
- {
- REQUIRE( std::abs(sp_eigvec(j, i)) == Approx(std::abs(eigvec(j, dense_eval))).epsilon(0.01) );
- }
- }
- }
- }
- TEST_CASE("fn_eigs_gen_even_complex_float_test")
- {
- const uword n_rows = 12;
- const uword n_eigval = 8;
- for (size_t trial = 0; trial < 10; ++trial)
- {
- SpMat< std::complex<float> > m;
- m.sprandu(n_rows, n_rows, 0.3);
- Mat< std::complex<float> > d(m);
- // Eigendecompose, getting first 8 eigenvectors.
- Col< std::complex<float> > sp_eigval;
- Mat< std::complex<float> > sp_eigvec;
- eigs_gen(sp_eigval, sp_eigvec, m, n_eigval);
- // Do the same for the dense case.
- Col< std::complex<float> > eigval;
- Mat< std::complex<float> > eigvec;
- eig_gen(eigval, eigvec, d);
- uvec used(n_rows);
- used.fill(0);
- for (size_t i = 0; i < n_eigval; ++i)
- {
- // Sorting these is difficult.
- // Find which one is the likely dense eigenvalue.
- uword dense_eval = n_rows + 1;
- for (uword k = 0; k < n_rows; ++k)
- {
- if ((std::abs(std::complex<float>(sp_eigval[i]).real() - eigval[k].real()) < 0.001) &&
- (std::abs(std::complex<float>(sp_eigval[i]).imag() - eigval[k].imag()) < 0.001) &&
- (used[k] == 0))
- {
- dense_eval = k;
- used[k] = 1;
- break;
- }
- }
- REQUIRE( dense_eval != n_rows + 1 );
- REQUIRE( std::abs(sp_eigval[i]) == Approx(std::abs(eigval[dense_eval])).epsilon(0.01) );
- for (uword j = 0; j < n_rows; ++j)
- {
- REQUIRE( std::abs(sp_eigvec(j, i)) == Approx(std::abs(eigvec(j, dense_eval))).epsilon(0.01) );
- }
- }
- }
- }
- TEST_CASE("eigs_gen_odd_complex_test")
- {
- const uword n_rows = 10;
- const uword n_eigval = 5;
- for (size_t trial = 0; trial < 10; ++trial)
- {
- SpMat< std::complex<double> > m;
- m.sprandu(n_rows, n_rows, 0.3);
- Mat< std::complex<double> > d(m);
- // Eigendecompose, getting first 5 eigenvectors.
- Col< std::complex<double> > sp_eigval;
- Mat< std::complex<double> > sp_eigvec;
- eigs_gen(sp_eigval, sp_eigvec, m, n_eigval);
- // Do the same for the dense case.
- Col< std::complex<double> > eigval;
- Mat< std::complex<double> > eigvec;
- eig_gen(eigval, eigvec, d);
- uvec used(n_rows);
- used.fill(0);
- for (size_t i = 0; i < n_eigval; ++i)
- {
- // Sorting these is difficult.
- // Find which one is the likely dense eigenvalue.
- uword dense_eval = n_rows + 1;
- for (uword k = 0; k < n_rows; ++k)
- {
- if ((std::abs(std::complex<double>(sp_eigval[i]).real() - eigval[k].real()) < 1e-10) &&
- (std::abs(std::complex<double>(sp_eigval[i]).imag() - eigval[k].imag()) < 1e-10) &&
- (used[k] == 0))
- {
- dense_eval = k;
- used[k] = 1;
- break;
- }
- }
- REQUIRE( dense_eval != n_rows + 1 );
- REQUIRE( std::abs(sp_eigval[i]) == Approx(std::abs(eigval[dense_eval])).epsilon(0.01) );
- for (size_t j = 0; j < n_rows; ++j)
- {
- REQUIRE( std::abs(sp_eigvec(j, i)) == Approx(std::abs(eigvec(j, dense_eval))).epsilon(0.01) );
- }
- }
- }
- }
- TEST_CASE("fn_eigs_gen_even_complex_test")
- {
- const uword n_rows = 15;
- const uword n_eigval = 6;
- for (size_t trial = 0; trial < 10; ++trial)
- {
- SpMat< std::complex<double> > m;
- m.sprandu(n_rows, n_rows, 0.3);
- Mat< std::complex<double> > d(m);
- // Eigendecompose, getting first 6 eigenvectors.
- Col< std::complex<double> > sp_eigval;
- Mat< std::complex<double> > sp_eigvec;
- eigs_gen(sp_eigval, sp_eigvec, m, n_eigval);
- // Do the same for the dense case.
- Col< std::complex<double> > eigval;
- Mat< std::complex<double> > eigvec;
- eig_gen(eigval, eigvec, d);
- uvec used(n_rows);
- used.fill(0);
- for (size_t i = 0; i < n_eigval; ++i)
- {
- // Sorting these is difficult.
- // Find which one is the likely dense eigenvalue.
- uword dense_eval = n_rows + 1;
- for (uword k = 0; k < n_rows; ++k)
- {
- if ((std::abs(std::complex<double>(sp_eigval[i]).real() - eigval[k].real()) < 1e-10) &&
- (std::abs(std::complex<double>(sp_eigval[i]).imag() - eigval[k].imag()) < 1e-10) &&
- (used[k] == 0))
- {
- dense_eval = k;
- used[k] = 1;
- break;
- }
- }
- REQUIRE( dense_eval != n_rows + 1 );
- REQUIRE( std::abs(sp_eigval[i]) == Approx(std::abs(eigval[dense_eval])).epsilon(0.01) );
- for (uword j = 0; j < n_rows; ++j)
- {
- REQUIRE( std::abs(sp_eigvec(j, i)) == Approx(std::abs(eigvec(j, dense_eval))).epsilon(0.01) );
- }
- }
- }
- }
|