123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 |
- #include <iostream>
- #include <armadillo>
- using namespace std;
- using namespace arma;
- // Armadillo documentation is available at:
- // http://arma.sourceforge.net/docs.html
- // NOTE: the C++11 "auto" keyword is not recommended for use with Armadillo objects and functions
- int
- main2(int argc, char** argv)
- {
- cout << "Armadillo version: " << arma_version::as_string() << endl;
-
- // construct a matrix according to given size and form of element initialisation
- mat A(2,3,fill::zeros);
-
- // .n_rows and .n_cols are read only
- cout << "A.n_rows: " << A.n_rows << endl;
- cout << "A.n_cols: " << A.n_cols << endl;
-
- A(1,2) = 456.0; // access an element (indexing starts at 0)
- A.print("A:");
-
- A = 5.0; // scalars are treated as a 1x1 matrix
- A.print("A:");
-
- A.set_size(4,5); // change the size (data is not preserved)
-
- A.fill(5.0); // set all elements to a specific value
- A.print("A:");
-
- // endr indicates "end of row"
- A << 0.165300 << 0.454037 << 0.995795 << 0.124098 << 0.047084 << endr
- << 0.688782 << 0.036549 << 0.552848 << 0.937664 << 0.866401 << endr
- << 0.348740 << 0.479388 << 0.506228 << 0.145673 << 0.491547 << endr
- << 0.148678 << 0.682258 << 0.571154 << 0.874724 << 0.444632 << endr
- << 0.245726 << 0.595218 << 0.409327 << 0.367827 << 0.385736 << endr;
-
- A.print("A:");
-
- // determinant
- cout << "det(A): " << det(A) << endl;
-
- // inverse
- cout << "inv(A): " << endl << inv(A) << endl;
-
- // save matrix as a text file
- A.save("A.txt", raw_ascii);
-
- // load from file
- mat B;
- B.load("A.txt");
-
- // submatrices
- cout << "B( span(0,2), span(3,4) ):" << endl << B( span(0,2), span(3,4) ) << endl;
-
- cout << "B( 0,3, size(3,2) ):" << endl << B( 0,3, size(3,2) ) << endl;
-
- cout << "B.row(0): " << endl << B.row(0) << endl;
-
- cout << "B.col(1): " << endl << B.col(1) << endl;
-
- // transpose
- cout << "B.t(): " << endl << B.t() << endl;
-
- // maximum from each column (traverse along rows)
- cout << "max(B): " << endl << max(B) << endl;
-
- // maximum from each row (traverse along columns)
- cout << "max(B,1): " << endl << max(B,1) << endl;
-
- // maximum value in B
- cout << "max(max(B)) = " << max(max(B)) << endl;
-
- // sum of each column (traverse along rows)
- cout << "sum(B): " << endl << sum(B) << endl;
-
- // sum of each row (traverse along columns)
- cout << "sum(B,1) =" << endl << sum(B,1) << endl;
-
- // sum of all elements
- cout << "accu(B): " << accu(B) << endl;
-
- // trace = sum along diagonal
- cout << "trace(B): " << trace(B) << endl;
-
- // generate the identity matrix
- mat C = eye<mat>(4,4);
-
- // random matrix with values uniformly distributed in the [0,1] interval
- mat D = randu<mat>(4,4);
- D.print("D:");
-
- // row vectors are treated like a matrix with one row
- rowvec r;
- r << 0.59119 << 0.77321 << 0.60275 << 0.35887 << 0.51683;
- r.print("r:");
-
- // column vectors are treated like a matrix with one column
- vec q;
- q << 0.14333 << 0.59478 << 0.14481 << 0.58558 << 0.60809;
- q.print("q:");
-
- // convert matrix to vector; data in matrices is stored column-by-column
- vec v = vectorise(A);
- v.print("v:");
-
- // dot or inner product
- cout << "as_scalar(r*q): " << as_scalar(r*q) << endl;
-
- // outer product
- cout << "q*r: " << endl << q*r << endl;
-
- // multiply-and-accumulate operation (no temporary matrices are created)
- cout << "accu(A % B) = " << accu(A % B) << endl;
-
- // example of a compound operation
- B += 2.0 * A.t();
- B.print("B:");
-
- // imat specifies an integer matrix
- imat AA;
- imat BB;
-
- AA << 1 << 2 << 3 << endr << 4 << 5 << 6 << endr << 7 << 8 << 9;
- BB << 3 << 2 << 1 << endr << 6 << 5 << 4 << endr << 9 << 8 << 7;
-
- // comparison of matrices (element-wise); output of a relational operator is a umat
- umat ZZ = (AA >= BB);
- ZZ.print("ZZ:");
-
- // cubes ("3D matrices")
- cube Q( B.n_rows, B.n_cols, 2 );
-
- Q.slice(0) = B;
- Q.slice(1) = 2.0 * B;
-
- Q.print("Q:");
-
- // 2D field of matrices; 3D fields are also supported
- field<mat> F(4,3);
-
- for(uword col=0; col < F.n_cols; ++col)
- for(uword row=0; row < F.n_rows; ++row)
- {
- F(row,col) = randu<mat>(2,3); // each element in field<mat> is a matrix
- }
-
- F.print("F:");
-
- return 0;
- }
|