123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
- // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #ifndef EIGEN_PARTIALLU_H
- #define EIGEN_PARTIALLU_H
- namespace Eigen {
- namespace internal {
- template<typename _MatrixType> struct traits<PartialPivLU<_MatrixType> >
- : traits<_MatrixType>
- {
- typedef MatrixXpr XprKind;
- typedef SolverStorage StorageKind;
- typedef int StorageIndex;
- typedef traits<_MatrixType> BaseTraits;
- enum {
- Flags = BaseTraits::Flags & RowMajorBit,
- CoeffReadCost = Dynamic
- };
- };
- template<typename T,typename Derived>
- struct enable_if_ref;
- // {
- // typedef Derived type;
- // };
- template<typename T,typename Derived>
- struct enable_if_ref<Ref<T>,Derived> {
- typedef Derived type;
- };
- } // end namespace internal
- /** \ingroup LU_Module
- *
- * \class PartialPivLU
- *
- * \brief LU decomposition of a matrix with partial pivoting, and related features
- *
- * \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition
- *
- * This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A
- * is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P
- * is a permutation matrix.
- *
- * Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible
- * matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class
- * does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the
- * matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices.
- *
- * The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided
- * by class FullPivLU.
- *
- * This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class,
- * such as rank computation. If you need these features, use class FullPivLU.
- *
- * This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses
- * in the general case.
- * On the other hand, it is \b not suitable to determine whether a given matrix is invertible.
- *
- * The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP().
- *
- * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
- *
- * \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU
- */
- template<typename _MatrixType> class PartialPivLU
- : public SolverBase<PartialPivLU<_MatrixType> >
- {
- public:
- typedef _MatrixType MatrixType;
- typedef SolverBase<PartialPivLU> Base;
- friend class SolverBase<PartialPivLU>;
- EIGEN_GENERIC_PUBLIC_INTERFACE(PartialPivLU)
- enum {
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
- typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
- typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
- typedef typename MatrixType::PlainObject PlainObject;
- /**
- * \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via PartialPivLU::compute(const MatrixType&).
- */
- PartialPivLU();
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa PartialPivLU()
- */
- explicit PartialPivLU(Index size);
- /** Constructor.
- *
- * \param matrix the matrix of which to compute the LU decomposition.
- *
- * \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
- * If you need to deal with non-full rank, use class FullPivLU instead.
- */
- template<typename InputType>
- explicit PartialPivLU(const EigenBase<InputType>& matrix);
- /** Constructor for \link InplaceDecomposition inplace decomposition \endlink
- *
- * \param matrix the matrix of which to compute the LU decomposition.
- *
- * \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
- * If you need to deal with non-full rank, use class FullPivLU instead.
- */
- template<typename InputType>
- explicit PartialPivLU(EigenBase<InputType>& matrix);
- template<typename InputType>
- PartialPivLU& compute(const EigenBase<InputType>& matrix) {
- m_lu = matrix.derived();
- compute();
- return *this;
- }
- /** \returns the LU decomposition matrix: the upper-triangular part is U, the
- * unit-lower-triangular part is L (at least for square matrices; in the non-square
- * case, special care is needed, see the documentation of class FullPivLU).
- *
- * \sa matrixL(), matrixU()
- */
- inline const MatrixType& matrixLU() const
- {
- eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
- return m_lu;
- }
- /** \returns the permutation matrix P.
- */
- inline const PermutationType& permutationP() const
- {
- eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
- return m_p;
- }
- #ifdef EIGEN_PARSED_BY_DOXYGEN
- /** This method returns the solution x to the equation Ax=b, where A is the matrix of which
- * *this is the LU decomposition.
- *
- * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
- * the only requirement in order for the equation to make sense is that
- * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
- *
- * \returns the solution.
- *
- * Example: \include PartialPivLU_solve.cpp
- * Output: \verbinclude PartialPivLU_solve.out
- *
- * Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution
- * theoretically exists and is unique regardless of b.
- *
- * \sa TriangularView::solve(), inverse(), computeInverse()
- */
- template<typename Rhs>
- inline const Solve<PartialPivLU, Rhs>
- solve(const MatrixBase<Rhs>& b) const;
- #endif
- /** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is
- the LU decomposition.
- */
- inline RealScalar rcond() const
- {
- eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
- return internal::rcond_estimate_helper(m_l1_norm, *this);
- }
- /** \returns the inverse of the matrix of which *this is the LU decomposition.
- *
- * \warning The matrix being decomposed here is assumed to be invertible. If you need to check for
- * invertibility, use class FullPivLU instead.
- *
- * \sa MatrixBase::inverse(), LU::inverse()
- */
- inline const Inverse<PartialPivLU> inverse() const
- {
- eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
- return Inverse<PartialPivLU>(*this);
- }
- /** \returns the determinant of the matrix of which
- * *this is the LU decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the LU decomposition has already been computed.
- *
- * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
- * optimized paths.
- *
- * \warning a determinant can be very big or small, so for matrices
- * of large enough dimension, there is a risk of overflow/underflow.
- *
- * \sa MatrixBase::determinant()
- */
- Scalar determinant() const;
- MatrixType reconstructedMatrix() const;
- EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return m_lu.rows(); }
- EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return m_lu.cols(); }
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- template<typename RhsType, typename DstType>
- EIGEN_DEVICE_FUNC
- void _solve_impl(const RhsType &rhs, DstType &dst) const {
- /* The decomposition PA = LU can be rewritten as A = P^{-1} L U.
- * So we proceed as follows:
- * Step 1: compute c = Pb.
- * Step 2: replace c by the solution x to Lx = c.
- * Step 3: replace c by the solution x to Ux = c.
- */
- // Step 1
- dst = permutationP() * rhs;
- // Step 2
- m_lu.template triangularView<UnitLower>().solveInPlace(dst);
- // Step 3
- m_lu.template triangularView<Upper>().solveInPlace(dst);
- }
- template<bool Conjugate, typename RhsType, typename DstType>
- EIGEN_DEVICE_FUNC
- void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const {
- /* The decomposition PA = LU can be rewritten as A^T = U^T L^T P.
- * So we proceed as follows:
- * Step 1: compute c as the solution to L^T c = b
- * Step 2: replace c by the solution x to U^T x = c.
- * Step 3: update c = P^-1 c.
- */
- eigen_assert(rhs.rows() == m_lu.cols());
- // Step 1
- dst = m_lu.template triangularView<Upper>().transpose()
- .template conjugateIf<Conjugate>().solve(rhs);
- // Step 2
- m_lu.template triangularView<UnitLower>().transpose()
- .template conjugateIf<Conjugate>().solveInPlace(dst);
- // Step 3
- dst = permutationP().transpose() * dst;
- }
- #endif
- protected:
- static void check_template_parameters()
- {
- EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
- }
- void compute();
- MatrixType m_lu;
- PermutationType m_p;
- TranspositionType m_rowsTranspositions;
- RealScalar m_l1_norm;
- signed char m_det_p;
- bool m_isInitialized;
- };
- template<typename MatrixType>
- PartialPivLU<MatrixType>::PartialPivLU()
- : m_lu(),
- m_p(),
- m_rowsTranspositions(),
- m_l1_norm(0),
- m_det_p(0),
- m_isInitialized(false)
- {
- }
- template<typename MatrixType>
- PartialPivLU<MatrixType>::PartialPivLU(Index size)
- : m_lu(size, size),
- m_p(size),
- m_rowsTranspositions(size),
- m_l1_norm(0),
- m_det_p(0),
- m_isInitialized(false)
- {
- }
- template<typename MatrixType>
- template<typename InputType>
- PartialPivLU<MatrixType>::PartialPivLU(const EigenBase<InputType>& matrix)
- : m_lu(matrix.rows(),matrix.cols()),
- m_p(matrix.rows()),
- m_rowsTranspositions(matrix.rows()),
- m_l1_norm(0),
- m_det_p(0),
- m_isInitialized(false)
- {
- compute(matrix.derived());
- }
- template<typename MatrixType>
- template<typename InputType>
- PartialPivLU<MatrixType>::PartialPivLU(EigenBase<InputType>& matrix)
- : m_lu(matrix.derived()),
- m_p(matrix.rows()),
- m_rowsTranspositions(matrix.rows()),
- m_l1_norm(0),
- m_det_p(0),
- m_isInitialized(false)
- {
- compute();
- }
- namespace internal {
- /** \internal This is the blocked version of fullpivlu_unblocked() */
- template<typename Scalar, int StorageOrder, typename PivIndex, int SizeAtCompileTime=Dynamic>
- struct partial_lu_impl
- {
- static const int UnBlockedBound = 16;
- static const bool UnBlockedAtCompileTime = SizeAtCompileTime!=Dynamic && SizeAtCompileTime<=UnBlockedBound;
- static const int ActualSizeAtCompileTime = UnBlockedAtCompileTime ? SizeAtCompileTime : Dynamic;
- // Remaining rows and columns at compile-time:
- static const int RRows = SizeAtCompileTime==2 ? 1 : Dynamic;
- static const int RCols = SizeAtCompileTime==2 ? 1 : Dynamic;
- typedef Matrix<Scalar, ActualSizeAtCompileTime, ActualSizeAtCompileTime, StorageOrder> MatrixType;
- typedef Ref<MatrixType> MatrixTypeRef;
- typedef Ref<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > BlockType;
- typedef typename MatrixType::RealScalar RealScalar;
- /** \internal performs the LU decomposition in-place of the matrix \a lu
- * using an unblocked algorithm.
- *
- * In addition, this function returns the row transpositions in the
- * vector \a row_transpositions which must have a size equal to the number
- * of columns of the matrix \a lu, and an integer \a nb_transpositions
- * which returns the actual number of transpositions.
- *
- * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise.
- */
- static Index unblocked_lu(MatrixTypeRef& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions)
- {
- typedef scalar_score_coeff_op<Scalar> Scoring;
- typedef typename Scoring::result_type Score;
- const Index rows = lu.rows();
- const Index cols = lu.cols();
- const Index size = (std::min)(rows,cols);
- // For small compile-time matrices it is worth processing the last row separately:
- // speedup: +100% for 2x2, +10% for others.
- const Index endk = UnBlockedAtCompileTime ? size-1 : size;
- nb_transpositions = 0;
- Index first_zero_pivot = -1;
- for(Index k = 0; k < endk; ++k)
- {
- int rrows = internal::convert_index<int>(rows-k-1);
- int rcols = internal::convert_index<int>(cols-k-1);
- Index row_of_biggest_in_col;
- Score biggest_in_corner
- = lu.col(k).tail(rows-k).unaryExpr(Scoring()).maxCoeff(&row_of_biggest_in_col);
- row_of_biggest_in_col += k;
- row_transpositions[k] = PivIndex(row_of_biggest_in_col);
- if(biggest_in_corner != Score(0))
- {
- if(k != row_of_biggest_in_col)
- {
- lu.row(k).swap(lu.row(row_of_biggest_in_col));
- ++nb_transpositions;
- }
- lu.col(k).tail(fix<RRows>(rrows)) /= lu.coeff(k,k);
- }
- else if(first_zero_pivot==-1)
- {
- // the pivot is exactly zero, we record the index of the first pivot which is exactly 0,
- // and continue the factorization such we still have A = PLU
- first_zero_pivot = k;
- }
- if(k<rows-1)
- lu.bottomRightCorner(fix<RRows>(rrows),fix<RCols>(rcols)).noalias() -= lu.col(k).tail(fix<RRows>(rrows)) * lu.row(k).tail(fix<RCols>(rcols));
- }
- // special handling of the last entry
- if(UnBlockedAtCompileTime)
- {
- Index k = endk;
- row_transpositions[k] = PivIndex(k);
- if (Scoring()(lu(k, k)) == Score(0) && first_zero_pivot == -1)
- first_zero_pivot = k;
- }
- return first_zero_pivot;
- }
- /** \internal performs the LU decomposition in-place of the matrix represented
- * by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a
- * recursive, blocked algorithm.
- *
- * In addition, this function returns the row transpositions in the
- * vector \a row_transpositions which must have a size equal to the number
- * of columns of the matrix \a lu, and an integer \a nb_transpositions
- * which returns the actual number of transpositions.
- *
- * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise.
- *
- * \note This very low level interface using pointers, etc. is to:
- * 1 - reduce the number of instantiations to the strict minimum
- * 2 - avoid infinite recursion of the instantiations with Block<Block<Block<...> > >
- */
- static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256)
- {
- MatrixTypeRef lu = MatrixType::Map(lu_data,rows, cols, OuterStride<>(luStride));
- const Index size = (std::min)(rows,cols);
- // if the matrix is too small, no blocking:
- if(UnBlockedAtCompileTime || size<=UnBlockedBound)
- {
- return unblocked_lu(lu, row_transpositions, nb_transpositions);
- }
- // automatically adjust the number of subdivisions to the size
- // of the matrix so that there is enough sub blocks:
- Index blockSize;
- {
- blockSize = size/8;
- blockSize = (blockSize/16)*16;
- blockSize = (std::min)((std::max)(blockSize,Index(8)), maxBlockSize);
- }
- nb_transpositions = 0;
- Index first_zero_pivot = -1;
- for(Index k = 0; k < size; k+=blockSize)
- {
- Index bs = (std::min)(size-k,blockSize); // actual size of the block
- Index trows = rows - k - bs; // trailing rows
- Index tsize = size - k - bs; // trailing size
- // partition the matrix:
- // A00 | A01 | A02
- // lu = A_0 | A_1 | A_2 = A10 | A11 | A12
- // A20 | A21 | A22
- BlockType A_0 = lu.block(0,0,rows,k);
- BlockType A_2 = lu.block(0,k+bs,rows,tsize);
- BlockType A11 = lu.block(k,k,bs,bs);
- BlockType A12 = lu.block(k,k+bs,bs,tsize);
- BlockType A21 = lu.block(k+bs,k,trows,bs);
- BlockType A22 = lu.block(k+bs,k+bs,trows,tsize);
- PivIndex nb_transpositions_in_panel;
- // recursively call the blocked LU algorithm on [A11^T A21^T]^T
- // with a very small blocking size:
- Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride,
- row_transpositions+k, nb_transpositions_in_panel, 16);
- if(ret>=0 && first_zero_pivot==-1)
- first_zero_pivot = k+ret;
- nb_transpositions += nb_transpositions_in_panel;
- // update permutations and apply them to A_0
- for(Index i=k; i<k+bs; ++i)
- {
- Index piv = (row_transpositions[i] += internal::convert_index<PivIndex>(k));
- A_0.row(i).swap(A_0.row(piv));
- }
- if(trows)
- {
- // apply permutations to A_2
- for(Index i=k;i<k+bs; ++i)
- A_2.row(i).swap(A_2.row(row_transpositions[i]));
- // A12 = A11^-1 A12
- A11.template triangularView<UnitLower>().solveInPlace(A12);
- A22.noalias() -= A21 * A12;
- }
- }
- return first_zero_pivot;
- }
- };
- /** \internal performs the LU decomposition with partial pivoting in-place.
- */
- template<typename MatrixType, typename TranspositionType>
- void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::StorageIndex& nb_transpositions)
- {
- // Special-case of zero matrix.
- if (lu.rows() == 0 || lu.cols() == 0) {
- nb_transpositions = 0;
- return;
- }
- eigen_assert(lu.cols() == row_transpositions.size());
- eigen_assert(row_transpositions.size() < 2 || (&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1);
- partial_lu_impl
- < typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor,
- typename TranspositionType::StorageIndex,
- EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime)>
- ::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions);
- }
- } // end namespace internal
- template<typename MatrixType>
- void PartialPivLU<MatrixType>::compute()
- {
- check_template_parameters();
- // the row permutation is stored as int indices, so just to be sure:
- eigen_assert(m_lu.rows()<NumTraits<int>::highest());
- if(m_lu.cols()>0)
- m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff();
- else
- m_l1_norm = RealScalar(0);
- eigen_assert(m_lu.rows() == m_lu.cols() && "PartialPivLU is only for square (and moreover invertible) matrices");
- const Index size = m_lu.rows();
- m_rowsTranspositions.resize(size);
- typename TranspositionType::StorageIndex nb_transpositions;
- internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions);
- m_det_p = (nb_transpositions%2) ? -1 : 1;
- m_p = m_rowsTranspositions;
- m_isInitialized = true;
- }
- template<typename MatrixType>
- typename PartialPivLU<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const
- {
- eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
- return Scalar(m_det_p) * m_lu.diagonal().prod();
- }
- /** \returns the matrix represented by the decomposition,
- * i.e., it returns the product: P^{-1} L U.
- * This function is provided for debug purpose. */
- template<typename MatrixType>
- MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const
- {
- eigen_assert(m_isInitialized && "LU is not initialized.");
- // LU
- MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix()
- * m_lu.template triangularView<Upper>();
- // P^{-1}(LU)
- res = m_p.inverse() * res;
- return res;
- }
- /***** Implementation details *****************************************************/
- namespace internal {
- /***** Implementation of inverse() *****************************************************/
- template<typename DstXprType, typename MatrixType>
- struct Assignment<DstXprType, Inverse<PartialPivLU<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename PartialPivLU<MatrixType>::Scalar>, Dense2Dense>
- {
- typedef PartialPivLU<MatrixType> LuType;
- typedef Inverse<LuType> SrcXprType;
- static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename LuType::Scalar> &)
- {
- dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
- }
- };
- } // end namespace internal
- /******** MatrixBase methods *******/
- /** \lu_module
- *
- * \return the partial-pivoting LU decomposition of \c *this.
- *
- * \sa class PartialPivLU
- */
- template<typename Derived>
- inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
- MatrixBase<Derived>::partialPivLu() const
- {
- return PartialPivLU<PlainObject>(eval());
- }
- /** \lu_module
- *
- * Synonym of partialPivLu().
- *
- * \return the partial-pivoting LU decomposition of \c *this.
- *
- * \sa class PartialPivLU
- */
- template<typename Derived>
- inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject>
- MatrixBase<Derived>::lu() const
- {
- return PartialPivLU<PlainObject>(eval());
- }
- } // end namespace Eigen
- #endif // EIGEN_PARTIALLU_H
|