123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
- // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #ifndef EIGEN_INCOMPLETE_CHOlESKY_H
- #define EIGEN_INCOMPLETE_CHOlESKY_H
- #include <vector>
- #include <list>
- namespace Eigen {
- /**
- * \brief Modified Incomplete Cholesky with dual threshold
- *
- * References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
- * Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999
- *
- * \tparam Scalar the scalar type of the input matrices
- * \tparam _UpLo The triangular part that will be used for the computations. It can be Lower
- * or Upper. Default is Lower.
- * \tparam _OrderingType The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<int>,
- * unless EIGEN_MPL2_ONLY is defined, in which case the default is NaturalOrdering<int>.
- *
- * \implsparsesolverconcept
- *
- * It performs the following incomplete factorization: \f$ S P A P' S \approx L L' \f$
- * where L is a lower triangular factor, S is a diagonal scaling matrix, and P is a
- * fill-in reducing permutation as computed by the ordering method.
- *
- * \b Shifting \b strategy: Let \f$ B = S P A P' S \f$ be the scaled matrix on which the factorization is carried out,
- * and \f$ \beta \f$ be the minimum value of the diagonal. If \f$ \beta > 0 \f$ then, the factorization is directly performed
- * on the matrix B. Otherwise, the factorization is performed on the shifted matrix \f$ B + (\sigma+|\beta| I \f$ where
- * \f$ \sigma \f$ is the initial shift value as returned and set by setInitialShift() method. The default value is \f$ \sigma = 10^{-3} \f$.
- * If the factorization fails, then the shift in doubled until it succeed or a maximum of ten attempts. If it still fails, as returned by
- * the info() method, then you can either increase the initial shift, or better use another preconditioning technique.
- *
- */
- template <typename Scalar, int _UpLo = Lower, typename _OrderingType = AMDOrdering<int> >
- class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> >
- {
- protected:
- typedef SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> > Base;
- using Base::m_isInitialized;
- public:
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef _OrderingType OrderingType;
- typedef typename OrderingType::PermutationType PermutationType;
- typedef typename PermutationType::StorageIndex StorageIndex;
- typedef SparseMatrix<Scalar,ColMajor,StorageIndex> FactorType;
- typedef Matrix<Scalar,Dynamic,1> VectorSx;
- typedef Matrix<RealScalar,Dynamic,1> VectorRx;
- typedef Matrix<StorageIndex,Dynamic, 1> VectorIx;
- typedef std::vector<std::list<StorageIndex> > VectorList;
- enum { UpLo = _UpLo };
- enum {
- ColsAtCompileTime = Dynamic,
- MaxColsAtCompileTime = Dynamic
- };
- public:
- /** Default constructor leaving the object in a partly non-initialized stage.
- *
- * You must call compute() or the pair analyzePattern()/factorize() to make it valid.
- *
- * \sa IncompleteCholesky(const MatrixType&)
- */
- IncompleteCholesky() : m_initialShift(1e-3),m_analysisIsOk(false),m_factorizationIsOk(false) {}
- /** Constructor computing the incomplete factorization for the given matrix \a matrix.
- */
- template<typename MatrixType>
- IncompleteCholesky(const MatrixType& matrix) : m_initialShift(1e-3),m_analysisIsOk(false),m_factorizationIsOk(false)
- {
- compute(matrix);
- }
- /** \returns number of rows of the factored matrix */
- EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_L.rows(); }
- /** \returns number of columns of the factored matrix */
- EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_L.cols(); }
- /** \brief Reports whether previous computation was successful.
- *
- * It triggers an assertion if \c *this has not been initialized through the respective constructor,
- * or a call to compute() or analyzePattern().
- *
- * \returns \c Success if computation was successful,
- * \c NumericalIssue if the matrix appears to be negative.
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "IncompleteCholesky is not initialized.");
- return m_info;
- }
- /** \brief Set the initial shift parameter \f$ \sigma \f$.
- */
- void setInitialShift(RealScalar shift) { m_initialShift = shift; }
- /** \brief Computes the fill reducing permutation vector using the sparsity pattern of \a mat
- */
- template<typename MatrixType>
- void analyzePattern(const MatrixType& mat)
- {
- OrderingType ord;
- PermutationType pinv;
- ord(mat.template selfadjointView<UpLo>(), pinv);
- if(pinv.size()>0) m_perm = pinv.inverse();
- else m_perm.resize(0);
- m_L.resize(mat.rows(), mat.cols());
- m_analysisIsOk = true;
- m_isInitialized = true;
- m_info = Success;
- }
- /** \brief Performs the numerical factorization of the input matrix \a mat
- *
- * The method analyzePattern() or compute() must have been called beforehand
- * with a matrix having the same pattern.
- *
- * \sa compute(), analyzePattern()
- */
- template<typename MatrixType>
- void factorize(const MatrixType& mat);
- /** Computes or re-computes the incomplete Cholesky factorization of the input matrix \a mat
- *
- * It is a shortcut for a sequential call to the analyzePattern() and factorize() methods.
- *
- * \sa analyzePattern(), factorize()
- */
- template<typename MatrixType>
- void compute(const MatrixType& mat)
- {
- analyzePattern(mat);
- factorize(mat);
- }
- // internal
- template<typename Rhs, typename Dest>
- void _solve_impl(const Rhs& b, Dest& x) const
- {
- eigen_assert(m_factorizationIsOk && "factorize() should be called first");
- if (m_perm.rows() == b.rows()) x = m_perm * b;
- else x = b;
- x = m_scale.asDiagonal() * x;
- x = m_L.template triangularView<Lower>().solve(x);
- x = m_L.adjoint().template triangularView<Upper>().solve(x);
- x = m_scale.asDiagonal() * x;
- if (m_perm.rows() == b.rows())
- x = m_perm.inverse() * x;
- }
- /** \returns the sparse lower triangular factor L */
- const FactorType& matrixL() const { eigen_assert("m_factorizationIsOk"); return m_L; }
- /** \returns a vector representing the scaling factor S */
- const VectorRx& scalingS() const { eigen_assert("m_factorizationIsOk"); return m_scale; }
- /** \returns the fill-in reducing permutation P (can be empty for a natural ordering) */
- const PermutationType& permutationP() const { eigen_assert("m_analysisIsOk"); return m_perm; }
- protected:
- FactorType m_L; // The lower part stored in CSC
- VectorRx m_scale; // The vector for scaling the matrix
- RealScalar m_initialShift; // The initial shift parameter
- bool m_analysisIsOk;
- bool m_factorizationIsOk;
- ComputationInfo m_info;
- PermutationType m_perm;
- private:
- inline void updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol);
- };
- // Based on the following paper:
- // C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
- // Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999
- // http://ftp.mcs.anl.gov/pub/tech_reports/reports/P682.pdf
- template<typename Scalar, int _UpLo, typename OrderingType>
- template<typename _MatrixType>
- void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat)
- {
- using std::sqrt;
- eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
- // Dropping strategy : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added
- // Apply the fill-reducing permutation computed in analyzePattern()
- if (m_perm.rows() == mat.rows() ) // To detect the null permutation
- {
- // The temporary is needed to make sure that the diagonal entry is properly sorted
- FactorType tmp(mat.rows(), mat.cols());
- tmp = mat.template selfadjointView<_UpLo>().twistedBy(m_perm);
- m_L.template selfadjointView<Lower>() = tmp.template selfadjointView<Lower>();
- }
- else
- {
- m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>();
- }
- Index n = m_L.cols();
- Index nnz = m_L.nonZeros();
- Map<VectorSx> vals(m_L.valuePtr(), nnz); //values
- Map<VectorIx> rowIdx(m_L.innerIndexPtr(), nnz); //Row indices
- Map<VectorIx> colPtr( m_L.outerIndexPtr(), n+1); // Pointer to the beginning of each row
- VectorIx firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization
- VectorList listCol(n); // listCol(j) is a linked list of columns to update column j
- VectorSx col_vals(n); // Store a nonzero values in each column
- VectorIx col_irow(n); // Row indices of nonzero elements in each column
- VectorIx col_pattern(n);
- col_pattern.fill(-1);
- StorageIndex col_nnz;
- // Computes the scaling factors
- m_scale.resize(n);
- m_scale.setZero();
- for (Index j = 0; j < n; j++)
- for (Index k = colPtr[j]; k < colPtr[j+1]; k++)
- {
- m_scale(j) += numext::abs2(vals(k));
- if(rowIdx[k]!=j)
- m_scale(rowIdx[k]) += numext::abs2(vals(k));
- }
- m_scale = m_scale.cwiseSqrt().cwiseSqrt();
- for (Index j = 0; j < n; ++j)
- if(m_scale(j)>(std::numeric_limits<RealScalar>::min)())
- m_scale(j) = RealScalar(1)/m_scale(j);
- else
- m_scale(j) = 1;
- // TODO disable scaling if not needed, i.e., if it is roughly uniform? (this will make solve() faster)
- // Scale and compute the shift for the matrix
- RealScalar mindiag = NumTraits<RealScalar>::highest();
- for (Index j = 0; j < n; j++)
- {
- for (Index k = colPtr[j]; k < colPtr[j+1]; k++)
- vals[k] *= (m_scale(j)*m_scale(rowIdx[k]));
- eigen_internal_assert(rowIdx[colPtr[j]]==j && "IncompleteCholesky: only the lower triangular part must be stored");
- mindiag = numext::mini(numext::real(vals[colPtr[j]]), mindiag);
- }
- FactorType L_save = m_L;
- RealScalar shift = 0;
- if(mindiag <= RealScalar(0.))
- shift = m_initialShift - mindiag;
- m_info = NumericalIssue;
- // Try to perform the incomplete factorization using the current shift
- int iter = 0;
- do
- {
- // Apply the shift to the diagonal elements of the matrix
- for (Index j = 0; j < n; j++)
- vals[colPtr[j]] += shift;
- // jki version of the Cholesky factorization
- Index j=0;
- for (; j < n; ++j)
- {
- // Left-looking factorization of the j-th column
- // First, load the j-th column into col_vals
- Scalar diag = vals[colPtr[j]]; // It is assumed that only the lower part is stored
- col_nnz = 0;
- for (Index i = colPtr[j] + 1; i < colPtr[j+1]; i++)
- {
- StorageIndex l = rowIdx[i];
- col_vals(col_nnz) = vals[i];
- col_irow(col_nnz) = l;
- col_pattern(l) = col_nnz;
- col_nnz++;
- }
- {
- typename std::list<StorageIndex>::iterator k;
- // Browse all previous columns that will update column j
- for(k = listCol[j].begin(); k != listCol[j].end(); k++)
- {
- Index jk = firstElt(*k); // First element to use in the column
- eigen_internal_assert(rowIdx[jk]==j);
- Scalar v_j_jk = numext::conj(vals[jk]);
- jk += 1;
- for (Index i = jk; i < colPtr[*k+1]; i++)
- {
- StorageIndex l = rowIdx[i];
- if(col_pattern[l]<0)
- {
- col_vals(col_nnz) = vals[i] * v_j_jk;
- col_irow[col_nnz] = l;
- col_pattern(l) = col_nnz;
- col_nnz++;
- }
- else
- col_vals(col_pattern[l]) -= vals[i] * v_j_jk;
- }
- updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol);
- }
- }
- // Scale the current column
- if(numext::real(diag) <= 0)
- {
- if(++iter>=10)
- return;
- // increase shift
- shift = numext::maxi(m_initialShift,RealScalar(2)*shift);
- // restore m_L, col_pattern, and listCol
- vals = Map<const VectorSx>(L_save.valuePtr(), nnz);
- rowIdx = Map<const VectorIx>(L_save.innerIndexPtr(), nnz);
- colPtr = Map<const VectorIx>(L_save.outerIndexPtr(), n+1);
- col_pattern.fill(-1);
- for(Index i=0; i<n; ++i)
- listCol[i].clear();
- break;
- }
- RealScalar rdiag = sqrt(numext::real(diag));
- vals[colPtr[j]] = rdiag;
- for (Index k = 0; k<col_nnz; ++k)
- {
- Index i = col_irow[k];
- //Scale
- col_vals(k) /= rdiag;
- //Update the remaining diagonals with col_vals
- vals[colPtr[i]] -= numext::abs2(col_vals(k));
- }
- // Select the largest p elements
- // p is the original number of elements in the column (without the diagonal)
- Index p = colPtr[j+1] - colPtr[j] - 1 ;
- Ref<VectorSx> cvals = col_vals.head(col_nnz);
- Ref<VectorIx> cirow = col_irow.head(col_nnz);
- internal::QuickSplit(cvals,cirow, p);
- // Insert the largest p elements in the matrix
- Index cpt = 0;
- for (Index i = colPtr[j]+1; i < colPtr[j+1]; i++)
- {
- vals[i] = col_vals(cpt);
- rowIdx[i] = col_irow(cpt);
- // restore col_pattern:
- col_pattern(col_irow(cpt)) = -1;
- cpt++;
- }
- // Get the first smallest row index and put it after the diagonal element
- Index jk = colPtr(j)+1;
- updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol);
- }
- if(j==n)
- {
- m_factorizationIsOk = true;
- m_info = Success;
- }
- } while(m_info!=Success);
- }
- template<typename Scalar, int _UpLo, typename OrderingType>
- inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol)
- {
- if (jk < colPtr(col+1) )
- {
- Index p = colPtr(col+1) - jk;
- Index minpos;
- rowIdx.segment(jk,p).minCoeff(&minpos);
- minpos += jk;
- if (rowIdx(minpos) != rowIdx(jk))
- {
- //Swap
- std::swap(rowIdx(jk),rowIdx(minpos));
- std::swap(vals(jk),vals(minpos));
- }
- firstElt(col) = internal::convert_index<StorageIndex,Index>(jk);
- listCol[rowIdx(jk)].push_back(internal::convert_index<StorageIndex,Index>(col));
- }
- }
- } // end namespace Eigen
- #endif
|