123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #ifndef EIGEN_SCALING_H
- #define EIGEN_SCALING_H
- namespace Eigen {
- /** \geometry_module \ingroup Geometry_Module
- *
- * \class UniformScaling
- *
- * \brief Represents a generic uniform scaling transformation
- *
- * \tparam _Scalar the scalar type, i.e., the type of the coefficients.
- *
- * This class represent a uniform scaling transformation. It is the return
- * type of Scaling(Scalar), and most of the time this is the only way it
- * is used. In particular, this class is not aimed to be used to store a scaling transformation,
- * but rather to make easier the constructions and updates of Transform objects.
- *
- * To represent an axis aligned scaling, use the DiagonalMatrix class.
- *
- * \sa Scaling(), class DiagonalMatrix, MatrixBase::asDiagonal(), class Translation, class Transform
- */
- namespace internal
- {
- // This helper helps nvcc+MSVC to properly parse this file.
- // See bug 1412.
- template <typename Scalar, int Dim, int Mode>
- struct uniformscaling_times_affine_returntype
- {
- enum
- {
- NewMode = int(Mode) == int(Isometry) ? Affine : Mode
- };
- typedef Transform <Scalar, Dim, NewMode> type;
- };
- }
- template<typename _Scalar>
- class UniformScaling
- {
- public:
- /** the scalar type of the coefficients */
- typedef _Scalar Scalar;
- protected:
- Scalar m_factor;
- public:
- /** Default constructor without initialization. */
- UniformScaling() {}
- /** Constructs and initialize a uniform scaling transformation */
- explicit inline UniformScaling(const Scalar& s) : m_factor(s) {}
- inline const Scalar& factor() const { return m_factor; }
- inline Scalar& factor() { return m_factor; }
- /** Concatenates two uniform scaling */
- inline UniformScaling operator* (const UniformScaling& other) const
- { return UniformScaling(m_factor * other.factor()); }
- /** Concatenates a uniform scaling and a translation */
- template<int Dim>
- inline Transform<Scalar,Dim,Affine> operator* (const Translation<Scalar,Dim>& t) const;
- /** Concatenates a uniform scaling and an affine transformation */
- template<int Dim, int Mode, int Options>
- inline typename
- internal::uniformscaling_times_affine_returntype<Scalar,Dim,Mode>::type
- operator* (const Transform<Scalar, Dim, Mode, Options>& t) const
- {
- typename internal::uniformscaling_times_affine_returntype<Scalar,Dim,Mode>::type res = t;
- res.prescale(factor());
- return res;
- }
- /** Concatenates a uniform scaling and a linear transformation matrix */
- // TODO returns an expression
- template<typename Derived>
- inline typename Eigen::internal::plain_matrix_type<Derived>::type operator* (const MatrixBase<Derived>& other) const
- { return other * m_factor; }
- template<typename Derived,int Dim>
- inline Matrix<Scalar,Dim,Dim> operator*(const RotationBase<Derived,Dim>& r) const
- { return r.toRotationMatrix() * m_factor; }
- /** \returns the inverse scaling */
- inline UniformScaling inverse() const
- { return UniformScaling(Scalar(1)/m_factor); }
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline UniformScaling<NewScalarType> cast() const
- { return UniformScaling<NewScalarType>(NewScalarType(m_factor)); }
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit UniformScaling(const UniformScaling<OtherScalarType>& other)
- { m_factor = Scalar(other.factor()); }
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const UniformScaling& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
- { return internal::isApprox(m_factor, other.factor(), prec); }
- };
- /** \addtogroup Geometry_Module */
- //@{
- /** Concatenates a linear transformation matrix and a uniform scaling
- * \relates UniformScaling
- */
- // NOTE this operator is defined in MatrixBase and not as a friend function
- // of UniformScaling to fix an internal crash of Intel's ICC
- template<typename Derived,typename Scalar>
- EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived,Scalar,product)
- operator*(const MatrixBase<Derived>& matrix, const UniformScaling<Scalar>& s)
- { return matrix.derived() * s.factor(); }
- /** Constructs a uniform scaling from scale factor \a s */
- inline UniformScaling<float> Scaling(float s) { return UniformScaling<float>(s); }
- /** Constructs a uniform scaling from scale factor \a s */
- inline UniformScaling<double> Scaling(double s) { return UniformScaling<double>(s); }
- /** Constructs a uniform scaling from scale factor \a s */
- template<typename RealScalar>
- inline UniformScaling<std::complex<RealScalar> > Scaling(const std::complex<RealScalar>& s)
- { return UniformScaling<std::complex<RealScalar> >(s); }
- /** Constructs a 2D axis aligned scaling */
- template<typename Scalar>
- inline DiagonalMatrix<Scalar,2> Scaling(const Scalar& sx, const Scalar& sy)
- { return DiagonalMatrix<Scalar,2>(sx, sy); }
- /** Constructs a 3D axis aligned scaling */
- template<typename Scalar>
- inline DiagonalMatrix<Scalar,3> Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz)
- { return DiagonalMatrix<Scalar,3>(sx, sy, sz); }
- /** Constructs an axis aligned scaling expression from vector expression \a coeffs
- * This is an alias for coeffs.asDiagonal()
- */
- template<typename Derived>
- inline const DiagonalWrapper<const Derived> Scaling(const MatrixBase<Derived>& coeffs)
- { return coeffs.asDiagonal(); }
- /** \deprecated */
- typedef DiagonalMatrix<float, 2> AlignedScaling2f;
- /** \deprecated */
- typedef DiagonalMatrix<double,2> AlignedScaling2d;
- /** \deprecated */
- typedef DiagonalMatrix<float, 3> AlignedScaling3f;
- /** \deprecated */
- typedef DiagonalMatrix<double,3> AlignedScaling3d;
- //@}
- template<typename Scalar>
- template<int Dim>
- inline Transform<Scalar,Dim,Affine>
- UniformScaling<Scalar>::operator* (const Translation<Scalar,Dim>& t) const
- {
- Transform<Scalar,Dim,Affine> res;
- res.matrix().setZero();
- res.linear().diagonal().fill(factor());
- res.translation() = factor() * t.vector();
- res(Dim,Dim) = Scalar(1);
- return res;
- }
- } // end namespace Eigen
- #endif // EIGEN_SCALING_H
|