123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
- // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #ifndef EIGEN_SUITESPARSEQRSUPPORT_H
- #define EIGEN_SUITESPARSEQRSUPPORT_H
- namespace Eigen {
-
- template<typename MatrixType> class SPQR;
- template<typename SPQRType> struct SPQRMatrixQReturnType;
- template<typename SPQRType> struct SPQRMatrixQTransposeReturnType;
- template <typename SPQRType, typename Derived> struct SPQR_QProduct;
- namespace internal {
- template <typename SPQRType> struct traits<SPQRMatrixQReturnType<SPQRType> >
- {
- typedef typename SPQRType::MatrixType ReturnType;
- };
- template <typename SPQRType> struct traits<SPQRMatrixQTransposeReturnType<SPQRType> >
- {
- typedef typename SPQRType::MatrixType ReturnType;
- };
- template <typename SPQRType, typename Derived> struct traits<SPQR_QProduct<SPQRType, Derived> >
- {
- typedef typename Derived::PlainObject ReturnType;
- };
- } // End namespace internal
-
- /**
- * \ingroup SPQRSupport_Module
- * \class SPQR
- * \brief Sparse QR factorization based on SuiteSparseQR library
- *
- * This class is used to perform a multithreaded and multifrontal rank-revealing QR decomposition
- * of sparse matrices. The result is then used to solve linear leasts_square systems.
- * Clearly, a QR factorization is returned such that A*P = Q*R where :
- *
- * P is the column permutation. Use colsPermutation() to get it.
- *
- * Q is the orthogonal matrix represented as Householder reflectors.
- * Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose.
- * You can then apply it to a vector.
- *
- * R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix.
- * NOTE : The Index type of R is always SuiteSparse_long. You can get it with SPQR::Index
- *
- * \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<>
- *
- * \implsparsesolverconcept
- *
- *
- */
- template<typename _MatrixType>
- class SPQR : public SparseSolverBase<SPQR<_MatrixType> >
- {
- protected:
- typedef SparseSolverBase<SPQR<_MatrixType> > Base;
- using Base::m_isInitialized;
- public:
- typedef typename _MatrixType::Scalar Scalar;
- typedef typename _MatrixType::RealScalar RealScalar;
- typedef SuiteSparse_long StorageIndex ;
- typedef SparseMatrix<Scalar, ColMajor, StorageIndex> MatrixType;
- typedef Map<PermutationMatrix<Dynamic, Dynamic, StorageIndex> > PermutationType;
- enum {
- ColsAtCompileTime = Dynamic,
- MaxColsAtCompileTime = Dynamic
- };
- public:
- SPQR()
- : m_analysisIsOk(false),
- m_factorizationIsOk(false),
- m_isRUpToDate(false),
- m_ordering(SPQR_ORDERING_DEFAULT),
- m_allow_tol(SPQR_DEFAULT_TOL),
- m_tolerance (NumTraits<Scalar>::epsilon()),
- m_cR(0),
- m_E(0),
- m_H(0),
- m_HPinv(0),
- m_HTau(0),
- m_useDefaultThreshold(true)
- {
- cholmod_l_start(&m_cc);
- }
-
- explicit SPQR(const _MatrixType& matrix)
- : m_analysisIsOk(false),
- m_factorizationIsOk(false),
- m_isRUpToDate(false),
- m_ordering(SPQR_ORDERING_DEFAULT),
- m_allow_tol(SPQR_DEFAULT_TOL),
- m_tolerance (NumTraits<Scalar>::epsilon()),
- m_cR(0),
- m_E(0),
- m_H(0),
- m_HPinv(0),
- m_HTau(0),
- m_useDefaultThreshold(true)
- {
- cholmod_l_start(&m_cc);
- compute(matrix);
- }
-
- ~SPQR()
- {
- SPQR_free();
- cholmod_l_finish(&m_cc);
- }
- void SPQR_free()
- {
- cholmod_l_free_sparse(&m_H, &m_cc);
- cholmod_l_free_sparse(&m_cR, &m_cc);
- cholmod_l_free_dense(&m_HTau, &m_cc);
- std::free(m_E);
- std::free(m_HPinv);
- }
- void compute(const _MatrixType& matrix)
- {
- if(m_isInitialized) SPQR_free();
- MatrixType mat(matrix);
-
- /* Compute the default threshold as in MatLab, see:
- * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
- * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3
- */
- RealScalar pivotThreshold = m_tolerance;
- if(m_useDefaultThreshold)
- {
- RealScalar max2Norm = 0.0;
- for (int j = 0; j < mat.cols(); j++) max2Norm = numext::maxi(max2Norm, mat.col(j).norm());
- if(max2Norm==RealScalar(0))
- max2Norm = RealScalar(1);
- pivotThreshold = 20 * (mat.rows() + mat.cols()) * max2Norm * NumTraits<RealScalar>::epsilon();
- }
- cholmod_sparse A;
- A = viewAsCholmod(mat);
- m_rows = matrix.rows();
- Index col = matrix.cols();
- m_rank = SuiteSparseQR<Scalar>(m_ordering, pivotThreshold, col, &A,
- &m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc);
- if (!m_cR)
- {
- m_info = NumericalIssue;
- m_isInitialized = false;
- return;
- }
- m_info = Success;
- m_isInitialized = true;
- m_isRUpToDate = false;
- }
- /**
- * Get the number of rows of the input matrix and the Q matrix
- */
- inline Index rows() const {return m_rows; }
-
- /**
- * Get the number of columns of the input matrix.
- */
- inline Index cols() const { return m_cR->ncol; }
-
- template<typename Rhs, typename Dest>
- void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
- {
- eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
- eigen_assert(b.cols()==1 && "This method is for vectors only");
- //Compute Q^T * b
- typename Dest::PlainObject y, y2;
- y = matrixQ().transpose() * b;
-
- // Solves with the triangular matrix R
- Index rk = this->rank();
- y2 = y;
- y.resize((std::max)(cols(),Index(y.rows())),y.cols());
- y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y2.topRows(rk));
- // Apply the column permutation
- // colsPermutation() performs a copy of the permutation,
- // so let's apply it manually:
- for(Index i = 0; i < rk; ++i) dest.row(m_E[i]) = y.row(i);
- for(Index i = rk; i < cols(); ++i) dest.row(m_E[i]).setZero();
-
- // y.bottomRows(y.rows()-rk).setZero();
- // dest = colsPermutation() * y.topRows(cols());
-
- m_info = Success;
- }
-
- /** \returns the sparse triangular factor R. It is a sparse matrix
- */
- const MatrixType matrixR() const
- {
- eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()");
- if(!m_isRUpToDate) {
- m_R = viewAsEigen<Scalar,ColMajor, typename MatrixType::StorageIndex>(*m_cR);
- m_isRUpToDate = true;
- }
- return m_R;
- }
- /// Get an expression of the matrix Q
- SPQRMatrixQReturnType<SPQR> matrixQ() const
- {
- return SPQRMatrixQReturnType<SPQR>(*this);
- }
- /// Get the permutation that was applied to columns of A
- PermutationType colsPermutation() const
- {
- eigen_assert(m_isInitialized && "Decomposition is not initialized.");
- return PermutationType(m_E, m_cR->ncol);
- }
- /**
- * Gets the rank of the matrix.
- * It should be equal to matrixQR().cols if the matrix is full-rank
- */
- Index rank() const
- {
- eigen_assert(m_isInitialized && "Decomposition is not initialized.");
- return m_cc.SPQR_istat[4];
- }
- /// Set the fill-reducing ordering method to be used
- void setSPQROrdering(int ord) { m_ordering = ord;}
- /// Set the tolerance tol to treat columns with 2-norm < =tol as zero
- void setPivotThreshold(const RealScalar& tol)
- {
- m_useDefaultThreshold = false;
- m_tolerance = tol;
- }
-
- /** \returns a pointer to the SPQR workspace */
- cholmod_common *cholmodCommon() const { return &m_cc; }
-
-
- /** \brief Reports whether previous computation was successful.
- *
- * \returns \c Success if computation was successful,
- * \c NumericalIssue if the sparse QR can not be computed
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "Decomposition is not initialized.");
- return m_info;
- }
- protected:
- bool m_analysisIsOk;
- bool m_factorizationIsOk;
- mutable bool m_isRUpToDate;
- mutable ComputationInfo m_info;
- int m_ordering; // Ordering method to use, see SPQR's manual
- int m_allow_tol; // Allow to use some tolerance during numerical factorization.
- RealScalar m_tolerance; // treat columns with 2-norm below this tolerance as zero
- mutable cholmod_sparse *m_cR; // The sparse R factor in cholmod format
- mutable MatrixType m_R; // The sparse matrix R in Eigen format
- mutable StorageIndex *m_E; // The permutation applied to columns
- mutable cholmod_sparse *m_H; //The householder vectors
- mutable StorageIndex *m_HPinv; // The row permutation of H
- mutable cholmod_dense *m_HTau; // The Householder coefficients
- mutable Index m_rank; // The rank of the matrix
- mutable cholmod_common m_cc; // Workspace and parameters
- bool m_useDefaultThreshold; // Use default threshold
- Index m_rows;
- template<typename ,typename > friend struct SPQR_QProduct;
- };
- template <typename SPQRType, typename Derived>
- struct SPQR_QProduct : ReturnByValue<SPQR_QProduct<SPQRType,Derived> >
- {
- typedef typename SPQRType::Scalar Scalar;
- typedef typename SPQRType::StorageIndex StorageIndex;
- //Define the constructor to get reference to argument types
- SPQR_QProduct(const SPQRType& spqr, const Derived& other, bool transpose) : m_spqr(spqr),m_other(other),m_transpose(transpose) {}
-
- inline Index rows() const { return m_transpose ? m_spqr.rows() : m_spqr.cols(); }
- inline Index cols() const { return m_other.cols(); }
- // Assign to a vector
- template<typename ResType>
- void evalTo(ResType& res) const
- {
- cholmod_dense y_cd;
- cholmod_dense *x_cd;
- int method = m_transpose ? SPQR_QTX : SPQR_QX;
- cholmod_common *cc = m_spqr.cholmodCommon();
- y_cd = viewAsCholmod(m_other.const_cast_derived());
- x_cd = SuiteSparseQR_qmult<Scalar>(method, m_spqr.m_H, m_spqr.m_HTau, m_spqr.m_HPinv, &y_cd, cc);
- res = Matrix<Scalar,ResType::RowsAtCompileTime,ResType::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x), x_cd->nrow, x_cd->ncol);
- cholmod_l_free_dense(&x_cd, cc);
- }
- const SPQRType& m_spqr;
- const Derived& m_other;
- bool m_transpose;
-
- };
- template<typename SPQRType>
- struct SPQRMatrixQReturnType{
-
- SPQRMatrixQReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
- template<typename Derived>
- SPQR_QProduct<SPQRType, Derived> operator*(const MatrixBase<Derived>& other)
- {
- return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(),false);
- }
- SPQRMatrixQTransposeReturnType<SPQRType> adjoint() const
- {
- return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
- }
- // To use for operations with the transpose of Q
- SPQRMatrixQTransposeReturnType<SPQRType> transpose() const
- {
- return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr);
- }
- const SPQRType& m_spqr;
- };
- template<typename SPQRType>
- struct SPQRMatrixQTransposeReturnType{
- SPQRMatrixQTransposeReturnType(const SPQRType& spqr) : m_spqr(spqr) {}
- template<typename Derived>
- SPQR_QProduct<SPQRType,Derived> operator*(const MatrixBase<Derived>& other)
- {
- return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(), true);
- }
- const SPQRType& m_spqr;
- };
- }// End namespace Eigen
- #endif
|