123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
- // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
- // Copyright (C) 2010 Vincent Lejeune
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #ifndef EIGEN_QR_H
- #define EIGEN_QR_H
- namespace Eigen {
- namespace internal {
- template<typename _MatrixType> struct traits<HouseholderQR<_MatrixType> >
- : traits<_MatrixType>
- {
- typedef MatrixXpr XprKind;
- typedef SolverStorage StorageKind;
- typedef int StorageIndex;
- enum { Flags = 0 };
- };
- } // end namespace internal
- /** \ingroup QR_Module
- *
- *
- * \class HouseholderQR
- *
- * \brief Householder QR decomposition of a matrix
- *
- * \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition
- *
- * This class performs a QR decomposition of a matrix \b A into matrices \b Q and \b R
- * such that
- * \f[
- * \mathbf{A} = \mathbf{Q} \, \mathbf{R}
- * \f]
- * by using Householder transformations. Here, \b Q a unitary matrix and \b R an upper triangular matrix.
- * The result is stored in a compact way compatible with LAPACK.
- *
- * Note that no pivoting is performed. This is \b not a rank-revealing decomposition.
- * If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead.
- *
- * This Householder QR decomposition is faster, but less numerically stable and less feature-full than
- * FullPivHouseholderQR or ColPivHouseholderQR.
- *
- * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
- *
- * \sa MatrixBase::householderQr()
- */
- template<typename _MatrixType> class HouseholderQR
- : public SolverBase<HouseholderQR<_MatrixType> >
- {
- public:
- typedef _MatrixType MatrixType;
- typedef SolverBase<HouseholderQR> Base;
- friend class SolverBase<HouseholderQR>;
- EIGEN_GENERIC_PUBLIC_INTERFACE(HouseholderQR)
- enum {
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
- typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, (MatrixType::Flags&RowMajorBit) ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
- typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
- typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
- typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;
- /**
- * \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via HouseholderQR::compute(const MatrixType&).
- */
- HouseholderQR() : m_qr(), m_hCoeffs(), m_temp(), m_isInitialized(false) {}
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa HouseholderQR()
- */
- HouseholderQR(Index rows, Index cols)
- : m_qr(rows, cols),
- m_hCoeffs((std::min)(rows,cols)),
- m_temp(cols),
- m_isInitialized(false) {}
- /** \brief Constructs a QR factorization from a given matrix
- *
- * This constructor computes the QR factorization of the matrix \a matrix by calling
- * the method compute(). It is a short cut for:
- *
- * \code
- * HouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
- * qr.compute(matrix);
- * \endcode
- *
- * \sa compute()
- */
- template<typename InputType>
- explicit HouseholderQR(const EigenBase<InputType>& matrix)
- : m_qr(matrix.rows(), matrix.cols()),
- m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
- m_temp(matrix.cols()),
- m_isInitialized(false)
- {
- compute(matrix.derived());
- }
- /** \brief Constructs a QR factorization from a given matrix
- *
- * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when
- * \c MatrixType is a Eigen::Ref.
- *
- * \sa HouseholderQR(const EigenBase&)
- */
- template<typename InputType>
- explicit HouseholderQR(EigenBase<InputType>& matrix)
- : m_qr(matrix.derived()),
- m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
- m_temp(matrix.cols()),
- m_isInitialized(false)
- {
- computeInPlace();
- }
- #ifdef EIGEN_PARSED_BY_DOXYGEN
- /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
- * *this is the QR decomposition, if any exists.
- *
- * \param b the right-hand-side of the equation to solve.
- *
- * \returns a solution.
- *
- * \note_about_checking_solutions
- *
- * \note_about_arbitrary_choice_of_solution
- *
- * Example: \include HouseholderQR_solve.cpp
- * Output: \verbinclude HouseholderQR_solve.out
- */
- template<typename Rhs>
- inline const Solve<HouseholderQR, Rhs>
- solve(const MatrixBase<Rhs>& b) const;
- #endif
- /** This method returns an expression of the unitary matrix Q as a sequence of Householder transformations.
- *
- * The returned expression can directly be used to perform matrix products. It can also be assigned to a dense Matrix object.
- * Here is an example showing how to recover the full or thin matrix Q, as well as how to perform matrix products using operator*:
- *
- * Example: \include HouseholderQR_householderQ.cpp
- * Output: \verbinclude HouseholderQR_householderQ.out
- */
- HouseholderSequenceType householderQ() const
- {
- eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
- return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate());
- }
- /** \returns a reference to the matrix where the Householder QR decomposition is stored
- * in a LAPACK-compatible way.
- */
- const MatrixType& matrixQR() const
- {
- eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
- return m_qr;
- }
- template<typename InputType>
- HouseholderQR& compute(const EigenBase<InputType>& matrix) {
- m_qr = matrix.derived();
- computeInPlace();
- return *this;
- }
- /** \returns the absolute value of the determinant of the matrix of which
- * *this is the QR decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the QR decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \warning a determinant can be very big or small, so for matrices
- * of large enough dimension, there is a risk of overflow/underflow.
- * One way to work around that is to use logAbsDeterminant() instead.
- *
- * \sa logAbsDeterminant(), MatrixBase::determinant()
- */
- typename MatrixType::RealScalar absDeterminant() const;
- /** \returns the natural log of the absolute value of the determinant of the matrix of which
- * *this is the QR decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the QR decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \note This method is useful to work around the risk of overflow/underflow that's inherent
- * to determinant computation.
- *
- * \sa absDeterminant(), MatrixBase::determinant()
- */
- typename MatrixType::RealScalar logAbsDeterminant() const;
- inline Index rows() const { return m_qr.rows(); }
- inline Index cols() const { return m_qr.cols(); }
- /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
- *
- * For advanced uses only.
- */
- const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- template<typename RhsType, typename DstType>
- void _solve_impl(const RhsType &rhs, DstType &dst) const;
- template<bool Conjugate, typename RhsType, typename DstType>
- void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const;
- #endif
- protected:
- static void check_template_parameters()
- {
- EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
- }
- void computeInPlace();
- MatrixType m_qr;
- HCoeffsType m_hCoeffs;
- RowVectorType m_temp;
- bool m_isInitialized;
- };
- template<typename MatrixType>
- typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const
- {
- using std::abs;
- eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
- eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
- return abs(m_qr.diagonal().prod());
- }
- template<typename MatrixType>
- typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const
- {
- eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
- eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
- return m_qr.diagonal().cwiseAbs().array().log().sum();
- }
- namespace internal {
- /** \internal */
- template<typename MatrixQR, typename HCoeffs>
- void householder_qr_inplace_unblocked(MatrixQR& mat, HCoeffs& hCoeffs, typename MatrixQR::Scalar* tempData = 0)
- {
- typedef typename MatrixQR::Scalar Scalar;
- typedef typename MatrixQR::RealScalar RealScalar;
- Index rows = mat.rows();
- Index cols = mat.cols();
- Index size = (std::min)(rows,cols);
- eigen_assert(hCoeffs.size() == size);
- typedef Matrix<Scalar,MatrixQR::ColsAtCompileTime,1> TempType;
- TempType tempVector;
- if(tempData==0)
- {
- tempVector.resize(cols);
- tempData = tempVector.data();
- }
- for(Index k = 0; k < size; ++k)
- {
- Index remainingRows = rows - k;
- Index remainingCols = cols - k - 1;
- RealScalar beta;
- mat.col(k).tail(remainingRows).makeHouseholderInPlace(hCoeffs.coeffRef(k), beta);
- mat.coeffRef(k,k) = beta;
- // apply H to remaining part of m_qr from the left
- mat.bottomRightCorner(remainingRows, remainingCols)
- .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), hCoeffs.coeffRef(k), tempData+k+1);
- }
- }
- /** \internal */
- template<typename MatrixQR, typename HCoeffs,
- typename MatrixQRScalar = typename MatrixQR::Scalar,
- bool InnerStrideIsOne = (MatrixQR::InnerStrideAtCompileTime == 1 && HCoeffs::InnerStrideAtCompileTime == 1)>
- struct householder_qr_inplace_blocked
- {
- // This is specialized for LAPACK-supported Scalar types in HouseholderQR_LAPACKE.h
- static void run(MatrixQR& mat, HCoeffs& hCoeffs, Index maxBlockSize=32,
- typename MatrixQR::Scalar* tempData = 0)
- {
- typedef typename MatrixQR::Scalar Scalar;
- typedef Block<MatrixQR,Dynamic,Dynamic> BlockType;
- Index rows = mat.rows();
- Index cols = mat.cols();
- Index size = (std::min)(rows, cols);
- typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixQR::MaxColsAtCompileTime,1> TempType;
- TempType tempVector;
- if(tempData==0)
- {
- tempVector.resize(cols);
- tempData = tempVector.data();
- }
- Index blockSize = (std::min)(maxBlockSize,size);
- Index k = 0;
- for (k = 0; k < size; k += blockSize)
- {
- Index bs = (std::min)(size-k,blockSize); // actual size of the block
- Index tcols = cols - k - bs; // trailing columns
- Index brows = rows-k; // rows of the block
- // partition the matrix:
- // A00 | A01 | A02
- // mat = A10 | A11 | A12
- // A20 | A21 | A22
- // and performs the qr dec of [A11^T A12^T]^T
- // and update [A21^T A22^T]^T using level 3 operations.
- // Finally, the algorithm continue on A22
- BlockType A11_21 = mat.block(k,k,brows,bs);
- Block<HCoeffs,Dynamic,1> hCoeffsSegment = hCoeffs.segment(k,bs);
- householder_qr_inplace_unblocked(A11_21, hCoeffsSegment, tempData);
- if(tcols)
- {
- BlockType A21_22 = mat.block(k,k+bs,brows,tcols);
- apply_block_householder_on_the_left(A21_22,A11_21,hCoeffsSegment, false); // false == backward
- }
- }
- }
- };
- } // end namespace internal
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- template<typename _MatrixType>
- template<typename RhsType, typename DstType>
- void HouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
- {
- const Index rank = (std::min)(rows(), cols());
- typename RhsType::PlainObject c(rhs);
- c.applyOnTheLeft(householderQ().setLength(rank).adjoint() );
- m_qr.topLeftCorner(rank, rank)
- .template triangularView<Upper>()
- .solveInPlace(c.topRows(rank));
- dst.topRows(rank) = c.topRows(rank);
- dst.bottomRows(cols()-rank).setZero();
- }
- template<typename _MatrixType>
- template<bool Conjugate, typename RhsType, typename DstType>
- void HouseholderQR<_MatrixType>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
- {
- const Index rank = (std::min)(rows(), cols());
- typename RhsType::PlainObject c(rhs);
- m_qr.topLeftCorner(rank, rank)
- .template triangularView<Upper>()
- .transpose().template conjugateIf<Conjugate>()
- .solveInPlace(c.topRows(rank));
- dst.topRows(rank) = c.topRows(rank);
- dst.bottomRows(rows()-rank).setZero();
- dst.applyOnTheLeft(householderQ().setLength(rank).template conjugateIf<!Conjugate>() );
- }
- #endif
- /** Performs the QR factorization of the given matrix \a matrix. The result of
- * the factorization is stored into \c *this, and a reference to \c *this
- * is returned.
- *
- * \sa class HouseholderQR, HouseholderQR(const MatrixType&)
- */
- template<typename MatrixType>
- void HouseholderQR<MatrixType>::computeInPlace()
- {
- check_template_parameters();
-
- Index rows = m_qr.rows();
- Index cols = m_qr.cols();
- Index size = (std::min)(rows,cols);
- m_hCoeffs.resize(size);
- m_temp.resize(cols);
- internal::householder_qr_inplace_blocked<MatrixType, HCoeffsType>::run(m_qr, m_hCoeffs, 48, m_temp.data());
- m_isInitialized = true;
- }
- /** \return the Householder QR decomposition of \c *this.
- *
- * \sa class HouseholderQR
- */
- template<typename Derived>
- const HouseholderQR<typename MatrixBase<Derived>::PlainObject>
- MatrixBase<Derived>::householderQr() const
- {
- return HouseholderQR<PlainObject>(eval());
- }
- } // end namespace Eigen
- #endif // EIGEN_QR_H
|