123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2008-2019 Gael Guennebaud <gael.guennebaud@inria.fr>
- // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #ifndef EIGEN_PARTIAL_REDUX_H
- #define EIGEN_PARTIAL_REDUX_H
- namespace Eigen {
- /** \class PartialReduxExpr
- * \ingroup Core_Module
- *
- * \brief Generic expression of a partially reduxed matrix
- *
- * \tparam MatrixType the type of the matrix we are applying the redux operation
- * \tparam MemberOp type of the member functor
- * \tparam Direction indicates the direction of the redux (#Vertical or #Horizontal)
- *
- * This class represents an expression of a partial redux operator of a matrix.
- * It is the return type of some VectorwiseOp functions,
- * and most of the time this is the only way it is used.
- *
- * \sa class VectorwiseOp
- */
- template< typename MatrixType, typename MemberOp, int Direction>
- class PartialReduxExpr;
- namespace internal {
- template<typename MatrixType, typename MemberOp, int Direction>
- struct traits<PartialReduxExpr<MatrixType, MemberOp, Direction> >
- : traits<MatrixType>
- {
- typedef typename MemberOp::result_type Scalar;
- typedef typename traits<MatrixType>::StorageKind StorageKind;
- typedef typename traits<MatrixType>::XprKind XprKind;
- typedef typename MatrixType::Scalar InputScalar;
- enum {
- RowsAtCompileTime = Direction==Vertical ? 1 : MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::ColsAtCompileTime,
- MaxRowsAtCompileTime = Direction==Vertical ? 1 : MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::MaxColsAtCompileTime,
- Flags = RowsAtCompileTime == 1 ? RowMajorBit : 0,
- TraversalSize = Direction==Vertical ? MatrixType::RowsAtCompileTime : MatrixType::ColsAtCompileTime
- };
- };
- }
- template< typename MatrixType, typename MemberOp, int Direction>
- class PartialReduxExpr : public internal::dense_xpr_base< PartialReduxExpr<MatrixType, MemberOp, Direction> >::type,
- internal::no_assignment_operator
- {
- public:
- typedef typename internal::dense_xpr_base<PartialReduxExpr>::type Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(PartialReduxExpr)
- EIGEN_DEVICE_FUNC
- explicit PartialReduxExpr(const MatrixType& mat, const MemberOp& func = MemberOp())
- : m_matrix(mat), m_functor(func) {}
- EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
- Index rows() const EIGEN_NOEXCEPT { return (Direction==Vertical ? 1 : m_matrix.rows()); }
- EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
- Index cols() const EIGEN_NOEXCEPT { return (Direction==Horizontal ? 1 : m_matrix.cols()); }
- EIGEN_DEVICE_FUNC
- typename MatrixType::Nested nestedExpression() const { return m_matrix; }
- EIGEN_DEVICE_FUNC
- const MemberOp& functor() const { return m_functor; }
- protected:
- typename MatrixType::Nested m_matrix;
- const MemberOp m_functor;
- };
- template<typename A,typename B> struct partial_redux_dummy_func;
- #define EIGEN_MAKE_PARTIAL_REDUX_FUNCTOR(MEMBER,COST,VECTORIZABLE,BINARYOP) \
- template <typename ResultType,typename Scalar> \
- struct member_##MEMBER { \
- EIGEN_EMPTY_STRUCT_CTOR(member_##MEMBER) \
- typedef ResultType result_type; \
- typedef BINARYOP<Scalar,Scalar> BinaryOp; \
- template<int Size> struct Cost { enum { value = COST }; }; \
- enum { Vectorizable = VECTORIZABLE }; \
- template<typename XprType> \
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE \
- ResultType operator()(const XprType& mat) const \
- { return mat.MEMBER(); } \
- BinaryOp binaryFunc() const { return BinaryOp(); } \
- }
- #define EIGEN_MEMBER_FUNCTOR(MEMBER,COST) \
- EIGEN_MAKE_PARTIAL_REDUX_FUNCTOR(MEMBER,COST,0,partial_redux_dummy_func)
- namespace internal {
- EIGEN_MEMBER_FUNCTOR(norm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
- EIGEN_MEMBER_FUNCTOR(stableNorm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
- EIGEN_MEMBER_FUNCTOR(blueNorm, (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost);
- EIGEN_MEMBER_FUNCTOR(hypotNorm, (Size-1) * functor_traits<scalar_hypot_op<Scalar> >::Cost );
- EIGEN_MEMBER_FUNCTOR(all, (Size-1)*NumTraits<Scalar>::AddCost);
- EIGEN_MEMBER_FUNCTOR(any, (Size-1)*NumTraits<Scalar>::AddCost);
- EIGEN_MEMBER_FUNCTOR(count, (Size-1)*NumTraits<Scalar>::AddCost);
- EIGEN_MAKE_PARTIAL_REDUX_FUNCTOR(sum, (Size-1)*NumTraits<Scalar>::AddCost, 1, internal::scalar_sum_op);
- EIGEN_MAKE_PARTIAL_REDUX_FUNCTOR(minCoeff, (Size-1)*NumTraits<Scalar>::AddCost, 1, internal::scalar_min_op);
- EIGEN_MAKE_PARTIAL_REDUX_FUNCTOR(maxCoeff, (Size-1)*NumTraits<Scalar>::AddCost, 1, internal::scalar_max_op);
- EIGEN_MAKE_PARTIAL_REDUX_FUNCTOR(prod, (Size-1)*NumTraits<Scalar>::MulCost, 1, internal::scalar_product_op);
- template <int p, typename ResultType,typename Scalar>
- struct member_lpnorm {
- typedef ResultType result_type;
- enum { Vectorizable = 0 };
- template<int Size> struct Cost
- { enum { value = (Size+5) * NumTraits<Scalar>::MulCost + (Size-1)*NumTraits<Scalar>::AddCost }; };
- EIGEN_DEVICE_FUNC member_lpnorm() {}
- template<typename XprType>
- EIGEN_DEVICE_FUNC inline ResultType operator()(const XprType& mat) const
- { return mat.template lpNorm<p>(); }
- };
- template <typename BinaryOpT, typename Scalar>
- struct member_redux {
- typedef BinaryOpT BinaryOp;
- typedef typename result_of<
- BinaryOp(const Scalar&,const Scalar&)
- >::type result_type;
- enum { Vectorizable = functor_traits<BinaryOp>::PacketAccess };
- template<int Size> struct Cost { enum { value = (Size-1) * functor_traits<BinaryOp>::Cost }; };
- EIGEN_DEVICE_FUNC explicit member_redux(const BinaryOp func) : m_functor(func) {}
- template<typename Derived>
- EIGEN_DEVICE_FUNC inline result_type operator()(const DenseBase<Derived>& mat) const
- { return mat.redux(m_functor); }
- const BinaryOp& binaryFunc() const { return m_functor; }
- const BinaryOp m_functor;
- };
- }
- /** \class VectorwiseOp
- * \ingroup Core_Module
- *
- * \brief Pseudo expression providing broadcasting and partial reduction operations
- *
- * \tparam ExpressionType the type of the object on which to do partial reductions
- * \tparam Direction indicates whether to operate on columns (#Vertical) or rows (#Horizontal)
- *
- * This class represents a pseudo expression with broadcasting and partial reduction features.
- * It is the return type of DenseBase::colwise() and DenseBase::rowwise()
- * and most of the time this is the only way it is explicitly used.
- *
- * To understand the logic of rowwise/colwise expression, let's consider a generic case `A.colwise().foo()`
- * where `foo` is any method of `VectorwiseOp`. This expression is equivalent to applying `foo()` to each
- * column of `A` and then re-assemble the outputs in a matrix expression:
- * \code [A.col(0).foo(), A.col(1).foo(), ..., A.col(A.cols()-1).foo()] \endcode
- *
- * Example: \include MatrixBase_colwise.cpp
- * Output: \verbinclude MatrixBase_colwise.out
- *
- * The begin() and end() methods are obviously exceptions to the previous rule as they
- * return STL-compatible begin/end iterators to the rows or columns of the nested expression.
- * Typical use cases include for-range-loop and calls to STL algorithms:
- *
- * Example: \include MatrixBase_colwise_iterator_cxx11.cpp
- * Output: \verbinclude MatrixBase_colwise_iterator_cxx11.out
- *
- * For a partial reduction on an empty input, some rules apply.
- * For the sake of clarity, let's consider a vertical reduction:
- * - If the number of columns is zero, then a 1x0 row-major vector expression is returned.
- * - Otherwise, if the number of rows is zero, then
- * - a row vector of zeros is returned for sum-like reductions (sum, squaredNorm, norm, etc.)
- * - a row vector of ones is returned for a product reduction (e.g., <code>MatrixXd(n,0).colwise().prod()</code>)
- * - an assert is triggered for all other reductions (minCoeff,maxCoeff,redux(bin_op))
- *
- * \sa DenseBase::colwise(), DenseBase::rowwise(), class PartialReduxExpr
- */
- template<typename ExpressionType, int Direction> class VectorwiseOp
- {
- public:
- typedef typename ExpressionType::Scalar Scalar;
- typedef typename ExpressionType::RealScalar RealScalar;
- typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
- typedef typename internal::ref_selector<ExpressionType>::non_const_type ExpressionTypeNested;
- typedef typename internal::remove_all<ExpressionTypeNested>::type ExpressionTypeNestedCleaned;
- template<template<typename OutScalar,typename InputScalar> class Functor,
- typename ReturnScalar=Scalar> struct ReturnType
- {
- typedef PartialReduxExpr<ExpressionType,
- Functor<ReturnScalar,Scalar>,
- Direction
- > Type;
- };
- template<typename BinaryOp> struct ReduxReturnType
- {
- typedef PartialReduxExpr<ExpressionType,
- internal::member_redux<BinaryOp,Scalar>,
- Direction
- > Type;
- };
- enum {
- isVertical = (Direction==Vertical) ? 1 : 0,
- isHorizontal = (Direction==Horizontal) ? 1 : 0
- };
- protected:
- template<typename OtherDerived> struct ExtendedType {
- typedef Replicate<OtherDerived,
- isVertical ? 1 : ExpressionType::RowsAtCompileTime,
- isHorizontal ? 1 : ExpressionType::ColsAtCompileTime> Type;
- };
- /** \internal
- * Replicates a vector to match the size of \c *this */
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- typename ExtendedType<OtherDerived>::Type
- extendedTo(const DenseBase<OtherDerived>& other) const
- {
- EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(isVertical, OtherDerived::MaxColsAtCompileTime==1),
- YOU_PASSED_A_ROW_VECTOR_BUT_A_COLUMN_VECTOR_WAS_EXPECTED)
- EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(isHorizontal, OtherDerived::MaxRowsAtCompileTime==1),
- YOU_PASSED_A_COLUMN_VECTOR_BUT_A_ROW_VECTOR_WAS_EXPECTED)
- return typename ExtendedType<OtherDerived>::Type
- (other.derived(),
- isVertical ? 1 : m_matrix.rows(),
- isHorizontal ? 1 : m_matrix.cols());
- }
- template<typename OtherDerived> struct OppositeExtendedType {
- typedef Replicate<OtherDerived,
- isHorizontal ? 1 : ExpressionType::RowsAtCompileTime,
- isVertical ? 1 : ExpressionType::ColsAtCompileTime> Type;
- };
- /** \internal
- * Replicates a vector in the opposite direction to match the size of \c *this */
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- typename OppositeExtendedType<OtherDerived>::Type
- extendedToOpposite(const DenseBase<OtherDerived>& other) const
- {
- EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(isHorizontal, OtherDerived::MaxColsAtCompileTime==1),
- YOU_PASSED_A_ROW_VECTOR_BUT_A_COLUMN_VECTOR_WAS_EXPECTED)
- EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(isVertical, OtherDerived::MaxRowsAtCompileTime==1),
- YOU_PASSED_A_COLUMN_VECTOR_BUT_A_ROW_VECTOR_WAS_EXPECTED)
- return typename OppositeExtendedType<OtherDerived>::Type
- (other.derived(),
- isHorizontal ? 1 : m_matrix.rows(),
- isVertical ? 1 : m_matrix.cols());
- }
- public:
- EIGEN_DEVICE_FUNC
- explicit inline VectorwiseOp(ExpressionType& matrix) : m_matrix(matrix) {}
- /** \internal */
- EIGEN_DEVICE_FUNC
- inline const ExpressionType& _expression() const { return m_matrix; }
- #ifdef EIGEN_PARSED_BY_DOXYGEN
- /** STL-like <a href="https://en.cppreference.com/w/cpp/named_req/RandomAccessIterator">RandomAccessIterator</a>
- * iterator type over the columns or rows as returned by the begin() and end() methods.
- */
- random_access_iterator_type iterator;
- /** This is the const version of iterator (aka read-only) */
- random_access_iterator_type const_iterator;
- #else
- typedef internal::subvector_stl_iterator<ExpressionType, DirectionType(Direction)> iterator;
- typedef internal::subvector_stl_iterator<const ExpressionType, DirectionType(Direction)> const_iterator;
- typedef internal::subvector_stl_reverse_iterator<ExpressionType, DirectionType(Direction)> reverse_iterator;
- typedef internal::subvector_stl_reverse_iterator<const ExpressionType, DirectionType(Direction)> const_reverse_iterator;
- #endif
- /** returns an iterator to the first row (rowwise) or column (colwise) of the nested expression.
- * \sa end(), cbegin()
- */
- iterator begin() { return iterator (m_matrix, 0); }
- /** const version of begin() */
- const_iterator begin() const { return const_iterator(m_matrix, 0); }
- /** const version of begin() */
- const_iterator cbegin() const { return const_iterator(m_matrix, 0); }
- /** returns a reverse iterator to the last row (rowwise) or column (colwise) of the nested expression.
- * \sa rend(), crbegin()
- */
- reverse_iterator rbegin() { return reverse_iterator (m_matrix, m_matrix.template subVectors<DirectionType(Direction)>()-1); }
- /** const version of rbegin() */
- const_reverse_iterator rbegin() const { return const_reverse_iterator (m_matrix, m_matrix.template subVectors<DirectionType(Direction)>()-1); }
- /** const version of rbegin() */
- const_reverse_iterator crbegin() const { return const_reverse_iterator (m_matrix, m_matrix.template subVectors<DirectionType(Direction)>()-1); }
- /** returns an iterator to the row (resp. column) following the last row (resp. column) of the nested expression
- * \sa begin(), cend()
- */
- iterator end() { return iterator (m_matrix, m_matrix.template subVectors<DirectionType(Direction)>()); }
- /** const version of end() */
- const_iterator end() const { return const_iterator(m_matrix, m_matrix.template subVectors<DirectionType(Direction)>()); }
- /** const version of end() */
- const_iterator cend() const { return const_iterator(m_matrix, m_matrix.template subVectors<DirectionType(Direction)>()); }
- /** returns a reverse iterator to the row (resp. column) before the first row (resp. column) of the nested expression
- * \sa begin(), cend()
- */
- reverse_iterator rend() { return reverse_iterator (m_matrix, -1); }
- /** const version of rend() */
- const_reverse_iterator rend() const { return const_reverse_iterator (m_matrix, -1); }
- /** const version of rend() */
- const_reverse_iterator crend() const { return const_reverse_iterator (m_matrix, -1); }
- /** \returns a row or column vector expression of \c *this reduxed by \a func
- *
- * The template parameter \a BinaryOp is the type of the functor
- * of the custom redux operator. Note that func must be an associative operator.
- *
- * \warning the size along the reduction direction must be strictly positive,
- * otherwise an assertion is triggered.
- *
- * \sa class VectorwiseOp, DenseBase::colwise(), DenseBase::rowwise()
- */
- template<typename BinaryOp>
- EIGEN_DEVICE_FUNC
- const typename ReduxReturnType<BinaryOp>::Type
- redux(const BinaryOp& func = BinaryOp()) const
- {
- eigen_assert(redux_length()>0 && "you are using an empty matrix");
- return typename ReduxReturnType<BinaryOp>::Type(_expression(), internal::member_redux<BinaryOp,Scalar>(func));
- }
- typedef typename ReturnType<internal::member_minCoeff>::Type MinCoeffReturnType;
- typedef typename ReturnType<internal::member_maxCoeff>::Type MaxCoeffReturnType;
- typedef PartialReduxExpr<const CwiseUnaryOp<internal::scalar_abs2_op<Scalar>, const ExpressionTypeNestedCleaned>,internal::member_sum<RealScalar,RealScalar>,Direction> SquaredNormReturnType;
- typedef CwiseUnaryOp<internal::scalar_sqrt_op<RealScalar>, const SquaredNormReturnType> NormReturnType;
- typedef typename ReturnType<internal::member_blueNorm,RealScalar>::Type BlueNormReturnType;
- typedef typename ReturnType<internal::member_stableNorm,RealScalar>::Type StableNormReturnType;
- typedef typename ReturnType<internal::member_hypotNorm,RealScalar>::Type HypotNormReturnType;
- typedef typename ReturnType<internal::member_sum>::Type SumReturnType;
- typedef EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(SumReturnType,Scalar,quotient) MeanReturnType;
- typedef typename ReturnType<internal::member_all>::Type AllReturnType;
- typedef typename ReturnType<internal::member_any>::Type AnyReturnType;
- typedef PartialReduxExpr<ExpressionType, internal::member_count<Index,Scalar>, Direction> CountReturnType;
- typedef typename ReturnType<internal::member_prod>::Type ProdReturnType;
- typedef Reverse<const ExpressionType, Direction> ConstReverseReturnType;
- typedef Reverse<ExpressionType, Direction> ReverseReturnType;
- template<int p> struct LpNormReturnType {
- typedef PartialReduxExpr<ExpressionType, internal::member_lpnorm<p,RealScalar,Scalar>,Direction> Type;
- };
- /** \returns a row (or column) vector expression of the smallest coefficient
- * of each column (or row) of the referenced expression.
- *
- * \warning the size along the reduction direction must be strictly positive,
- * otherwise an assertion is triggered.
- *
- * \warning the result is undefined if \c *this contains NaN.
- *
- * Example: \include PartialRedux_minCoeff.cpp
- * Output: \verbinclude PartialRedux_minCoeff.out
- *
- * \sa DenseBase::minCoeff() */
- EIGEN_DEVICE_FUNC
- const MinCoeffReturnType minCoeff() const
- {
- eigen_assert(redux_length()>0 && "you are using an empty matrix");
- return MinCoeffReturnType(_expression());
- }
- /** \returns a row (or column) vector expression of the largest coefficient
- * of each column (or row) of the referenced expression.
- *
- * \warning the size along the reduction direction must be strictly positive,
- * otherwise an assertion is triggered.
- *
- * \warning the result is undefined if \c *this contains NaN.
- *
- * Example: \include PartialRedux_maxCoeff.cpp
- * Output: \verbinclude PartialRedux_maxCoeff.out
- *
- * \sa DenseBase::maxCoeff() */
- EIGEN_DEVICE_FUNC
- const MaxCoeffReturnType maxCoeff() const
- {
- eigen_assert(redux_length()>0 && "you are using an empty matrix");
- return MaxCoeffReturnType(_expression());
- }
- /** \returns a row (or column) vector expression of the squared norm
- * of each column (or row) of the referenced expression.
- * This is a vector with real entries, even if the original matrix has complex entries.
- *
- * Example: \include PartialRedux_squaredNorm.cpp
- * Output: \verbinclude PartialRedux_squaredNorm.out
- *
- * \sa DenseBase::squaredNorm() */
- EIGEN_DEVICE_FUNC
- const SquaredNormReturnType squaredNorm() const
- { return SquaredNormReturnType(m_matrix.cwiseAbs2()); }
- /** \returns a row (or column) vector expression of the norm
- * of each column (or row) of the referenced expression.
- * This is a vector with real entries, even if the original matrix has complex entries.
- *
- * Example: \include PartialRedux_norm.cpp
- * Output: \verbinclude PartialRedux_norm.out
- *
- * \sa DenseBase::norm() */
- EIGEN_DEVICE_FUNC
- const NormReturnType norm() const
- { return NormReturnType(squaredNorm()); }
- /** \returns a row (or column) vector expression of the norm
- * of each column (or row) of the referenced expression.
- * This is a vector with real entries, even if the original matrix has complex entries.
- *
- * Example: \include PartialRedux_norm.cpp
- * Output: \verbinclude PartialRedux_norm.out
- *
- * \sa DenseBase::norm() */
- template<int p>
- EIGEN_DEVICE_FUNC
- const typename LpNormReturnType<p>::Type lpNorm() const
- { return typename LpNormReturnType<p>::Type(_expression()); }
- /** \returns a row (or column) vector expression of the norm
- * of each column (or row) of the referenced expression, using
- * Blue's algorithm.
- * This is a vector with real entries, even if the original matrix has complex entries.
- *
- * \sa DenseBase::blueNorm() */
- EIGEN_DEVICE_FUNC
- const BlueNormReturnType blueNorm() const
- { return BlueNormReturnType(_expression()); }
- /** \returns a row (or column) vector expression of the norm
- * of each column (or row) of the referenced expression, avoiding
- * underflow and overflow.
- * This is a vector with real entries, even if the original matrix has complex entries.
- *
- * \sa DenseBase::stableNorm() */
- EIGEN_DEVICE_FUNC
- const StableNormReturnType stableNorm() const
- { return StableNormReturnType(_expression()); }
- /** \returns a row (or column) vector expression of the norm
- * of each column (or row) of the referenced expression, avoiding
- * underflow and overflow using a concatenation of hypot() calls.
- * This is a vector with real entries, even if the original matrix has complex entries.
- *
- * \sa DenseBase::hypotNorm() */
- EIGEN_DEVICE_FUNC
- const HypotNormReturnType hypotNorm() const
- { return HypotNormReturnType(_expression()); }
- /** \returns a row (or column) vector expression of the sum
- * of each column (or row) of the referenced expression.
- *
- * Example: \include PartialRedux_sum.cpp
- * Output: \verbinclude PartialRedux_sum.out
- *
- * \sa DenseBase::sum() */
- EIGEN_DEVICE_FUNC
- const SumReturnType sum() const
- { return SumReturnType(_expression()); }
- /** \returns a row (or column) vector expression of the mean
- * of each column (or row) of the referenced expression.
- *
- * \sa DenseBase::mean() */
- EIGEN_DEVICE_FUNC
- const MeanReturnType mean() const
- { return sum() / Scalar(Direction==Vertical?m_matrix.rows():m_matrix.cols()); }
- /** \returns a row (or column) vector expression representing
- * whether \b all coefficients of each respective column (or row) are \c true.
- * This expression can be assigned to a vector with entries of type \c bool.
- *
- * \sa DenseBase::all() */
- EIGEN_DEVICE_FUNC
- const AllReturnType all() const
- { return AllReturnType(_expression()); }
- /** \returns a row (or column) vector expression representing
- * whether \b at \b least one coefficient of each respective column (or row) is \c true.
- * This expression can be assigned to a vector with entries of type \c bool.
- *
- * \sa DenseBase::any() */
- EIGEN_DEVICE_FUNC
- const AnyReturnType any() const
- { return AnyReturnType(_expression()); }
- /** \returns a row (or column) vector expression representing
- * the number of \c true coefficients of each respective column (or row).
- * This expression can be assigned to a vector whose entries have the same type as is used to
- * index entries of the original matrix; for dense matrices, this is \c std::ptrdiff_t .
- *
- * Example: \include PartialRedux_count.cpp
- * Output: \verbinclude PartialRedux_count.out
- *
- * \sa DenseBase::count() */
- EIGEN_DEVICE_FUNC
- const CountReturnType count() const
- { return CountReturnType(_expression()); }
- /** \returns a row (or column) vector expression of the product
- * of each column (or row) of the referenced expression.
- *
- * Example: \include PartialRedux_prod.cpp
- * Output: \verbinclude PartialRedux_prod.out
- *
- * \sa DenseBase::prod() */
- EIGEN_DEVICE_FUNC
- const ProdReturnType prod() const
- { return ProdReturnType(_expression()); }
- /** \returns a matrix expression
- * where each column (or row) are reversed.
- *
- * Example: \include Vectorwise_reverse.cpp
- * Output: \verbinclude Vectorwise_reverse.out
- *
- * \sa DenseBase::reverse() */
- EIGEN_DEVICE_FUNC
- const ConstReverseReturnType reverse() const
- { return ConstReverseReturnType( _expression() ); }
- /** \returns a writable matrix expression
- * where each column (or row) are reversed.
- *
- * \sa reverse() const */
- EIGEN_DEVICE_FUNC
- ReverseReturnType reverse()
- { return ReverseReturnType( _expression() ); }
- typedef Replicate<ExpressionType,(isVertical?Dynamic:1),(isHorizontal?Dynamic:1)> ReplicateReturnType;
- EIGEN_DEVICE_FUNC
- const ReplicateReturnType replicate(Index factor) const;
- /**
- * \return an expression of the replication of each column (or row) of \c *this
- *
- * Example: \include DirectionWise_replicate.cpp
- * Output: \verbinclude DirectionWise_replicate.out
- *
- * \sa VectorwiseOp::replicate(Index), DenseBase::replicate(), class Replicate
- */
- // NOTE implemented here because of sunstudio's compilation errors
- // isVertical*Factor+isHorizontal instead of (isVertical?Factor:1) to handle CUDA bug with ternary operator
- template<int Factor> const Replicate<ExpressionType,isVertical*Factor+isHorizontal,isHorizontal*Factor+isVertical>
- EIGEN_DEVICE_FUNC
- replicate(Index factor = Factor) const
- {
- return Replicate<ExpressionType,(isVertical?Factor:1),(isHorizontal?Factor:1)>
- (_expression(),isVertical?factor:1,isHorizontal?factor:1);
- }
- /////////// Artithmetic operators ///////////
- /** Copies the vector \a other to each subvector of \c *this */
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- ExpressionType& operator=(const DenseBase<OtherDerived>& other)
- {
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
- EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
- //eigen_assert((m_matrix.isNull()) == (other.isNull())); FIXME
- return m_matrix = extendedTo(other.derived());
- }
- /** Adds the vector \a other to each subvector of \c *this */
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- ExpressionType& operator+=(const DenseBase<OtherDerived>& other)
- {
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
- EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
- return m_matrix += extendedTo(other.derived());
- }
- /** Substracts the vector \a other to each subvector of \c *this */
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- ExpressionType& operator-=(const DenseBase<OtherDerived>& other)
- {
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
- EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
- return m_matrix -= extendedTo(other.derived());
- }
- /** Multiples each subvector of \c *this by the vector \a other */
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- ExpressionType& operator*=(const DenseBase<OtherDerived>& other)
- {
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
- EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType)
- EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
- m_matrix *= extendedTo(other.derived());
- return m_matrix;
- }
- /** Divides each subvector of \c *this by the vector \a other */
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- ExpressionType& operator/=(const DenseBase<OtherDerived>& other)
- {
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
- EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType)
- EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
- m_matrix /= extendedTo(other.derived());
- return m_matrix;
- }
- /** Returns the expression of the sum of the vector \a other to each subvector of \c *this */
- template<typename OtherDerived> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
- CwiseBinaryOp<internal::scalar_sum_op<Scalar,typename OtherDerived::Scalar>,
- const ExpressionTypeNestedCleaned,
- const typename ExtendedType<OtherDerived>::Type>
- operator+(const DenseBase<OtherDerived>& other) const
- {
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
- EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
- return m_matrix + extendedTo(other.derived());
- }
- /** Returns the expression of the difference between each subvector of \c *this and the vector \a other */
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- CwiseBinaryOp<internal::scalar_difference_op<Scalar,typename OtherDerived::Scalar>,
- const ExpressionTypeNestedCleaned,
- const typename ExtendedType<OtherDerived>::Type>
- operator-(const DenseBase<OtherDerived>& other) const
- {
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
- EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
- return m_matrix - extendedTo(other.derived());
- }
- /** Returns the expression where each subvector is the product of the vector \a other
- * by the corresponding subvector of \c *this */
- template<typename OtherDerived> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC
- CwiseBinaryOp<internal::scalar_product_op<Scalar>,
- const ExpressionTypeNestedCleaned,
- const typename ExtendedType<OtherDerived>::Type>
- EIGEN_DEVICE_FUNC
- operator*(const DenseBase<OtherDerived>& other) const
- {
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
- EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType)
- EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
- return m_matrix * extendedTo(other.derived());
- }
- /** Returns the expression where each subvector is the quotient of the corresponding
- * subvector of \c *this by the vector \a other */
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- CwiseBinaryOp<internal::scalar_quotient_op<Scalar>,
- const ExpressionTypeNestedCleaned,
- const typename ExtendedType<OtherDerived>::Type>
- operator/(const DenseBase<OtherDerived>& other) const
- {
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
- EIGEN_STATIC_ASSERT_ARRAYXPR(ExpressionType)
- EIGEN_STATIC_ASSERT_SAME_XPR_KIND(ExpressionType, OtherDerived)
- return m_matrix / extendedTo(other.derived());
- }
- /** \returns an expression where each column (or row) of the referenced matrix are normalized.
- * The referenced matrix is \b not modified.
- * \sa MatrixBase::normalized(), normalize()
- */
- EIGEN_DEVICE_FUNC
- CwiseBinaryOp<internal::scalar_quotient_op<Scalar>,
- const ExpressionTypeNestedCleaned,
- const typename OppositeExtendedType<NormReturnType>::Type>
- normalized() const { return m_matrix.cwiseQuotient(extendedToOpposite(this->norm())); }
- /** Normalize in-place each row or columns of the referenced matrix.
- * \sa MatrixBase::normalize(), normalized()
- */
- EIGEN_DEVICE_FUNC void normalize() {
- m_matrix = this->normalized();
- }
- EIGEN_DEVICE_FUNC inline void reverseInPlace();
- /////////// Geometry module ///////////
- typedef Homogeneous<ExpressionType,Direction> HomogeneousReturnType;
- EIGEN_DEVICE_FUNC
- HomogeneousReturnType homogeneous() const;
- typedef typename ExpressionType::PlainObject CrossReturnType;
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- const CrossReturnType cross(const MatrixBase<OtherDerived>& other) const;
- enum {
- HNormalized_Size = Direction==Vertical ? internal::traits<ExpressionType>::RowsAtCompileTime
- : internal::traits<ExpressionType>::ColsAtCompileTime,
- HNormalized_SizeMinusOne = HNormalized_Size==Dynamic ? Dynamic : HNormalized_Size-1
- };
- typedef Block<const ExpressionType,
- Direction==Vertical ? int(HNormalized_SizeMinusOne)
- : int(internal::traits<ExpressionType>::RowsAtCompileTime),
- Direction==Horizontal ? int(HNormalized_SizeMinusOne)
- : int(internal::traits<ExpressionType>::ColsAtCompileTime)>
- HNormalized_Block;
- typedef Block<const ExpressionType,
- Direction==Vertical ? 1 : int(internal::traits<ExpressionType>::RowsAtCompileTime),
- Direction==Horizontal ? 1 : int(internal::traits<ExpressionType>::ColsAtCompileTime)>
- HNormalized_Factors;
- typedef CwiseBinaryOp<internal::scalar_quotient_op<typename internal::traits<ExpressionType>::Scalar>,
- const HNormalized_Block,
- const Replicate<HNormalized_Factors,
- Direction==Vertical ? HNormalized_SizeMinusOne : 1,
- Direction==Horizontal ? HNormalized_SizeMinusOne : 1> >
- HNormalizedReturnType;
- EIGEN_DEVICE_FUNC
- const HNormalizedReturnType hnormalized() const;
- # ifdef EIGEN_VECTORWISEOP_PLUGIN
- # include EIGEN_VECTORWISEOP_PLUGIN
- # endif
- protected:
- Index redux_length() const
- {
- return Direction==Vertical ? m_matrix.rows() : m_matrix.cols();
- }
- ExpressionTypeNested m_matrix;
- };
- //const colwise moved to DenseBase.h due to CUDA compiler bug
- /** \returns a writable VectorwiseOp wrapper of *this providing additional partial reduction operations
- *
- * \sa rowwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting
- */
- template<typename Derived>
- EIGEN_DEVICE_FUNC inline typename DenseBase<Derived>::ColwiseReturnType
- DenseBase<Derived>::colwise()
- {
- return ColwiseReturnType(derived());
- }
- //const rowwise moved to DenseBase.h due to CUDA compiler bug
- /** \returns a writable VectorwiseOp wrapper of *this providing additional partial reduction operations
- *
- * \sa colwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting
- */
- template<typename Derived>
- EIGEN_DEVICE_FUNC inline typename DenseBase<Derived>::RowwiseReturnType
- DenseBase<Derived>::rowwise()
- {
- return RowwiseReturnType(derived());
- }
- } // end namespace Eigen
- #endif // EIGEN_PARTIAL_REDUX_H
|