123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 |
- /*
- Copyright (c) 2011, Intel Corporation. All rights reserved.
- Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
-
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the name of Intel Corporation nor the names of its contributors may
- be used to endorse or promote products derived from this software without
- specific prior written permission.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- ********************************************************************************
- * Content : Eigen bindings to Intel(R) MKL
- * MKL VML support for coefficient-wise unary Eigen expressions like a=b.sin()
- ********************************************************************************
- */
- #ifndef EIGEN_ASSIGN_VML_H
- #define EIGEN_ASSIGN_VML_H
- namespace Eigen {
- namespace internal {
- template<typename Dst, typename Src>
- class vml_assign_traits
- {
- private:
- enum {
- DstHasDirectAccess = Dst::Flags & DirectAccessBit,
- SrcHasDirectAccess = Src::Flags & DirectAccessBit,
- StorageOrdersAgree = (int(Dst::IsRowMajor) == int(Src::IsRowMajor)),
- InnerSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::SizeAtCompileTime)
- : int(Dst::Flags)&RowMajorBit ? int(Dst::ColsAtCompileTime)
- : int(Dst::RowsAtCompileTime),
- InnerMaxSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::MaxSizeAtCompileTime)
- : int(Dst::Flags)&RowMajorBit ? int(Dst::MaxColsAtCompileTime)
- : int(Dst::MaxRowsAtCompileTime),
- MaxSizeAtCompileTime = Dst::SizeAtCompileTime,
- MightEnableVml = StorageOrdersAgree && DstHasDirectAccess && SrcHasDirectAccess && Src::InnerStrideAtCompileTime==1 && Dst::InnerStrideAtCompileTime==1,
- MightLinearize = MightEnableVml && (int(Dst::Flags) & int(Src::Flags) & LinearAccessBit),
- VmlSize = MightLinearize ? MaxSizeAtCompileTime : InnerMaxSize,
- LargeEnough = VmlSize==Dynamic || VmlSize>=EIGEN_MKL_VML_THRESHOLD
- };
- public:
- enum {
- EnableVml = MightEnableVml && LargeEnough,
- Traversal = MightLinearize ? LinearTraversal : DefaultTraversal
- };
- };
- #define EIGEN_PP_EXPAND(ARG) ARG
- #if !defined (EIGEN_FAST_MATH) || (EIGEN_FAST_MATH != 1)
- #define EIGEN_VMLMODE_EXPAND_xLA , VML_HA
- #else
- #define EIGEN_VMLMODE_EXPAND_xLA , VML_LA
- #endif
- #define EIGEN_VMLMODE_EXPAND_x_
- #define EIGEN_VMLMODE_PREFIX_xLA vm
- #define EIGEN_VMLMODE_PREFIX_x_ v
- #define EIGEN_VMLMODE_PREFIX(VMLMODE) EIGEN_CAT(EIGEN_VMLMODE_PREFIX_x,VMLMODE)
- #define EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE, VMLMODE) \
- template< typename DstXprType, typename SrcXprNested> \
- struct Assignment<DstXprType, CwiseUnaryOp<scalar_##EIGENOP##_op<EIGENTYPE>, SrcXprNested>, assign_op<EIGENTYPE,EIGENTYPE>, \
- Dense2Dense, typename enable_if<vml_assign_traits<DstXprType,SrcXprNested>::EnableVml>::type> { \
- typedef CwiseUnaryOp<scalar_##EIGENOP##_op<EIGENTYPE>, SrcXprNested> SrcXprType; \
- static void run(DstXprType &dst, const SrcXprType &src, const assign_op<EIGENTYPE,EIGENTYPE> &func) { \
- resize_if_allowed(dst, src, func); \
- eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); \
- if(vml_assign_traits<DstXprType,SrcXprNested>::Traversal==LinearTraversal) { \
- VMLOP(dst.size(), (const VMLTYPE*)src.nestedExpression().data(), \
- (VMLTYPE*)dst.data() EIGEN_PP_EXPAND(EIGEN_VMLMODE_EXPAND_x##VMLMODE) ); \
- } else { \
- const Index outerSize = dst.outerSize(); \
- for(Index outer = 0; outer < outerSize; ++outer) { \
- const EIGENTYPE *src_ptr = src.IsRowMajor ? &(src.nestedExpression().coeffRef(outer,0)) : \
- &(src.nestedExpression().coeffRef(0, outer)); \
- EIGENTYPE *dst_ptr = dst.IsRowMajor ? &(dst.coeffRef(outer,0)) : &(dst.coeffRef(0, outer)); \
- VMLOP( dst.innerSize(), (const VMLTYPE*)src_ptr, \
- (VMLTYPE*)dst_ptr EIGEN_PP_EXPAND(EIGEN_VMLMODE_EXPAND_x##VMLMODE)); \
- } \
- } \
- } \
- }; \
- #define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(EIGENOP, VMLOP, VMLMODE) \
- EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, EIGEN_CAT(EIGEN_VMLMODE_PREFIX(VMLMODE),s##VMLOP), float, float, VMLMODE) \
- EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, EIGEN_CAT(EIGEN_VMLMODE_PREFIX(VMLMODE),d##VMLOP), double, double, VMLMODE)
- #define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_CPLX(EIGENOP, VMLOP, VMLMODE) \
- EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, EIGEN_CAT(EIGEN_VMLMODE_PREFIX(VMLMODE),c##VMLOP), scomplex, MKL_Complex8, VMLMODE) \
- EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, EIGEN_CAT(EIGEN_VMLMODE_PREFIX(VMLMODE),z##VMLOP), dcomplex, MKL_Complex16, VMLMODE)
-
- #define EIGEN_MKL_VML_DECLARE_UNARY_CALLS(EIGENOP, VMLOP, VMLMODE) \
- EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(EIGENOP, VMLOP, VMLMODE) \
- EIGEN_MKL_VML_DECLARE_UNARY_CALLS_CPLX(EIGENOP, VMLOP, VMLMODE)
-
- EIGEN_MKL_VML_DECLARE_UNARY_CALLS(sin, Sin, LA)
- EIGEN_MKL_VML_DECLARE_UNARY_CALLS(asin, Asin, LA)
- EIGEN_MKL_VML_DECLARE_UNARY_CALLS(sinh, Sinh, LA)
- EIGEN_MKL_VML_DECLARE_UNARY_CALLS(cos, Cos, LA)
- EIGEN_MKL_VML_DECLARE_UNARY_CALLS(acos, Acos, LA)
- EIGEN_MKL_VML_DECLARE_UNARY_CALLS(cosh, Cosh, LA)
- EIGEN_MKL_VML_DECLARE_UNARY_CALLS(tan, Tan, LA)
- EIGEN_MKL_VML_DECLARE_UNARY_CALLS(atan, Atan, LA)
- EIGEN_MKL_VML_DECLARE_UNARY_CALLS(tanh, Tanh, LA)
- // EIGEN_MKL_VML_DECLARE_UNARY_CALLS(abs, Abs, _)
- EIGEN_MKL_VML_DECLARE_UNARY_CALLS(exp, Exp, LA)
- EIGEN_MKL_VML_DECLARE_UNARY_CALLS(log, Ln, LA)
- EIGEN_MKL_VML_DECLARE_UNARY_CALLS(log10, Log10, LA)
- EIGEN_MKL_VML_DECLARE_UNARY_CALLS(sqrt, Sqrt, _)
- EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(square, Sqr, _)
- EIGEN_MKL_VML_DECLARE_UNARY_CALLS_CPLX(arg, Arg, _)
- EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(round, Round, _)
- EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(floor, Floor, _)
- EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(ceil, Ceil, _)
- #define EIGEN_MKL_VML_DECLARE_POW_CALL(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE, VMLMODE) \
- template< typename DstXprType, typename SrcXprNested, typename Plain> \
- struct Assignment<DstXprType, CwiseBinaryOp<scalar_##EIGENOP##_op<EIGENTYPE,EIGENTYPE>, SrcXprNested, \
- const CwiseNullaryOp<internal::scalar_constant_op<EIGENTYPE>,Plain> >, assign_op<EIGENTYPE,EIGENTYPE>, \
- Dense2Dense, typename enable_if<vml_assign_traits<DstXprType,SrcXprNested>::EnableVml>::type> { \
- typedef CwiseBinaryOp<scalar_##EIGENOP##_op<EIGENTYPE,EIGENTYPE>, SrcXprNested, \
- const CwiseNullaryOp<internal::scalar_constant_op<EIGENTYPE>,Plain> > SrcXprType; \
- static void run(DstXprType &dst, const SrcXprType &src, const assign_op<EIGENTYPE,EIGENTYPE> &func) { \
- resize_if_allowed(dst, src, func); \
- eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); \
- VMLTYPE exponent = reinterpret_cast<const VMLTYPE&>(src.rhs().functor().m_other); \
- if(vml_assign_traits<DstXprType,SrcXprNested>::Traversal==LinearTraversal) \
- { \
- VMLOP( dst.size(), (const VMLTYPE*)src.lhs().data(), exponent, \
- (VMLTYPE*)dst.data() EIGEN_PP_EXPAND(EIGEN_VMLMODE_EXPAND_x##VMLMODE) ); \
- } else { \
- const Index outerSize = dst.outerSize(); \
- for(Index outer = 0; outer < outerSize; ++outer) { \
- const EIGENTYPE *src_ptr = src.IsRowMajor ? &(src.lhs().coeffRef(outer,0)) : \
- &(src.lhs().coeffRef(0, outer)); \
- EIGENTYPE *dst_ptr = dst.IsRowMajor ? &(dst.coeffRef(outer,0)) : &(dst.coeffRef(0, outer)); \
- VMLOP( dst.innerSize(), (const VMLTYPE*)src_ptr, exponent, \
- (VMLTYPE*)dst_ptr EIGEN_PP_EXPAND(EIGEN_VMLMODE_EXPAND_x##VMLMODE)); \
- } \
- } \
- } \
- };
-
- EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmsPowx, float, float, LA)
- EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmdPowx, double, double, LA)
- EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmcPowx, scomplex, MKL_Complex8, LA)
- EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmzPowx, dcomplex, MKL_Complex16, LA)
- } // end namespace internal
- } // end namespace Eigen
- #endif // EIGEN_ASSIGN_VML_H
|