123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414 |
- /* ========================================================================= */
- /* === AMD: approximate minimum degree ordering =========================== */
- /* ========================================================================= */
- /* ------------------------------------------------------------------------- */
- /* AMD Version 2.2, Copyright (c) 2007 by Timothy A. Davis, */
- /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */
- /* email: DrTimothyAldenDavis@gmail.com */
- /* ------------------------------------------------------------------------- */
- /**
- * @brief AMD finds a symmetric ordering P of a matrix A so that the Cholesky
- * factorization of P*A*P' has fewer nonzeros and takes less work than the
- * Cholesky factorization of A.
- *
- * If A is not symmetric, then it performs its
- * ordering on the matrix A+A'. Two sets of user-callable routines are
- * provided, one for int integers and the other for SuiteSparse_long integers.
- *
- * The method is based on the approximate minimum degree algorithm, discussed
- * in Amestoy, Davis, and Duff, "An approximate degree ordering algorithm",
- * SIAM Journal of Matrix Analysis and Applications, vol. 17, no. 4, pp.
- * 886-905, 1996. This package can perform both the AMD ordering (with
- * aggressive absorption), and the AMDBAR ordering (without aggressive
- * absorption) discussed in the above paper. This package differs from the
- * Fortran codes discussed in the paper:
- *
- * (1) it can ignore "dense" rows and columns, leading to faster run times
- * (2) it computes the ordering of A+A' if A is not symmetric
- * (3) it is followed by a depth-first post-ordering of the assembly tree
- * (or supernodal elimination tree)
- *
- * For historical reasons, the Fortran versions, amd.f and amdbar.f, have
- * been left (nearly) unchanged. They compute the identical ordering as
- * described in the above paper.
- */
- #ifndef AMD_H
- #define AMD_H
- /* make it easy for C++ programs to include AMD */
- #ifdef __cplusplus
- extern "C" {
- #endif
- /* get the definition of size_t: */
- #include <stddef.h>
- #include "SuiteSparse_config.h"
- int amd_order /* returns AMD_OK, AMD_OK_BUT_JUMBLED,
- * AMD_INVALID, or AMD_OUT_OF_MEMORY */
- (
- int n, /* A is n-by-n. n must be >= 0. */
- const int Ap [ ], /* column pointers for A, of size n+1 */
- const int Ai [ ], /* row indices of A, of size nz = Ap [n] */
- int P [ ], /* output permutation, of size n */
- double Control [ ], /* input Control settings, of size AMD_CONTROL */
- double Info [ ] /* output Info statistics, of size AMD_INFO */
- ) ;
- SuiteSparse_long amd_l_order /* see above for description of arguments */
- (
- SuiteSparse_long n,
- const SuiteSparse_long Ap [ ],
- const SuiteSparse_long Ai [ ],
- SuiteSparse_long P [ ],
- double Control [ ],
- double Info [ ]
- ) ;
- /* Input arguments (not modified):
- *
- * n: the matrix A is n-by-n.
- * Ap: an int/SuiteSparse_long array of size n+1, containing column
- * pointers of A.
- * Ai: an int/SuiteSparse_long array of size nz, containing the row
- * indices of A, where nz = Ap [n].
- * Control: a double array of size AMD_CONTROL, containing control
- * parameters. Defaults are used if Control is NULL.
- *
- * Output arguments (not defined on input):
- *
- * P: an int/SuiteSparse_long array of size n, containing the output
- * permutation. If row i is the kth pivot row, then P [k] = i. In
- * MATLAB notation, the reordered matrix is A (P,P).
- * Info: a double array of size AMD_INFO, containing statistical
- * information. Ignored if Info is NULL.
- *
- * On input, the matrix A is stored in column-oriented form. The row indices
- * of nonzero entries in column j are stored in Ai [Ap [j] ... Ap [j+1]-1].
- *
- * If the row indices appear in ascending order in each column, and there
- * are no duplicate entries, then amd_order is slightly more efficient in
- * terms of time and memory usage. If this condition does not hold, a copy
- * of the matrix is created (where these conditions do hold), and the copy is
- * ordered. This feature is new to v2.0 (v1.2 and earlier required this
- * condition to hold for the input matrix).
- *
- * Row indices must be in the range 0 to
- * n-1. Ap [0] must be zero, and thus nz = Ap [n] is the number of nonzeros
- * in A. The array Ap is of size n+1, and the array Ai is of size nz = Ap [n].
- * The matrix does not need to be symmetric, and the diagonal does not need to
- * be present (if diagonal entries are present, they are ignored except for
- * the output statistic Info [AMD_NZDIAG]). The arrays Ai and Ap are not
- * modified. This form of the Ap and Ai arrays to represent the nonzero
- * pattern of the matrix A is the same as that used internally by MATLAB.
- * If you wish to use a more flexible input structure, please see the
- * umfpack_*_triplet_to_col routines in the UMFPACK package, at
- * http://www.suitesparse.com.
- *
- * Restrictions: n >= 0. Ap [0] = 0. Ap [j] <= Ap [j+1] for all j in the
- * range 0 to n-1. nz = Ap [n] >= 0. Ai [0..nz-1] must be in the range 0
- * to n-1. Finally, Ai, Ap, and P must not be NULL. If any of these
- * restrictions are not met, AMD returns AMD_INVALID.
- *
- * AMD returns:
- *
- * AMD_OK if the matrix is valid and sufficient memory can be allocated to
- * perform the ordering.
- *
- * AMD_OUT_OF_MEMORY if not enough memory can be allocated.
- *
- * AMD_INVALID if the input arguments n, Ap, Ai are invalid, or if P is
- * NULL.
- *
- * AMD_OK_BUT_JUMBLED if the matrix had unsorted columns, and/or duplicate
- * entries, but was otherwise valid.
- *
- * The AMD routine first forms the pattern of the matrix A+A', and then
- * computes a fill-reducing ordering, P. If P [k] = i, then row/column i of
- * the original is the kth pivotal row. In MATLAB notation, the permuted
- * matrix is A (P,P), except that 0-based indexing is used instead of the
- * 1-based indexing in MATLAB.
- *
- * The Control array is used to set various parameters for AMD. If a NULL
- * pointer is passed, default values are used. The Control array is not
- * modified.
- *
- * Control [AMD_DENSE]: controls the threshold for "dense" rows/columns.
- * A dense row/column in A+A' can cause AMD to spend a lot of time in
- * ordering the matrix. If Control [AMD_DENSE] >= 0, rows/columns
- * with more than Control [AMD_DENSE] * sqrt (n) entries are ignored
- * during the ordering, and placed last in the output order. The
- * default value of Control [AMD_DENSE] is 10. If negative, no
- * rows/columns are treated as "dense". Rows/columns with 16 or
- * fewer off-diagonal entries are never considered "dense".
- *
- * Control [AMD_AGGRESSIVE]: controls whether or not to use aggressive
- * absorption, in which a prior element is absorbed into the current
- * element if is a subset of the current element, even if it is not
- * adjacent to the current pivot element (refer to Amestoy, Davis,
- * & Duff, 1996, for more details). The default value is nonzero,
- * which means to perform aggressive absorption. This nearly always
- * leads to a better ordering (because the approximate degrees are
- * more accurate) and a lower execution time. There are cases where
- * it can lead to a slightly worse ordering, however. To turn it off,
- * set Control [AMD_AGGRESSIVE] to 0.
- *
- * Control [2..4] are not used in the current version, but may be used in
- * future versions.
- *
- * The Info array provides statistics about the ordering on output. If it is
- * not present, the statistics are not returned. This is not an error
- * condition.
- *
- * Info [AMD_STATUS]: the return value of AMD, either AMD_OK,
- * AMD_OK_BUT_JUMBLED, AMD_OUT_OF_MEMORY, or AMD_INVALID.
- *
- * Info [AMD_N]: n, the size of the input matrix
- *
- * Info [AMD_NZ]: the number of nonzeros in A, nz = Ap [n]
- *
- * Info [AMD_SYMMETRY]: the symmetry of the matrix A. It is the number
- * of "matched" off-diagonal entries divided by the total number of
- * off-diagonal entries. An entry A(i,j) is matched if A(j,i) is also
- * an entry, for any pair (i,j) for which i != j. In MATLAB notation,
- * S = spones (A) ;
- * B = tril (S, -1) + triu (S, 1) ;
- * symmetry = nnz (B & B') / nnz (B) ;
- *
- * Info [AMD_NZDIAG]: the number of entries on the diagonal of A.
- *
- * Info [AMD_NZ_A_PLUS_AT]: the number of nonzeros in A+A', excluding the
- * diagonal. If A is perfectly symmetric (Info [AMD_SYMMETRY] = 1)
- * with a fully nonzero diagonal, then Info [AMD_NZ_A_PLUS_AT] = nz-n
- * (the smallest possible value). If A is perfectly unsymmetric
- * (Info [AMD_SYMMETRY] = 0, for an upper triangular matrix, for
- * example) with no diagonal, then Info [AMD_NZ_A_PLUS_AT] = 2*nz
- * (the largest possible value).
- *
- * Info [AMD_NDENSE]: the number of "dense" rows/columns of A+A' that were
- * removed from A prior to ordering. These are placed last in the
- * output order P.
- *
- * Info [AMD_MEMORY]: the amount of memory used by AMD, in bytes. In the
- * current version, this is 1.2 * Info [AMD_NZ_A_PLUS_AT] + 9*n
- * times the size of an integer. This is at most 2.4nz + 9n. This
- * excludes the size of the input arguments Ai, Ap, and P, which have
- * a total size of nz + 2*n + 1 integers.
- *
- * Info [AMD_NCMPA]: the number of garbage collections performed.
- *
- * Info [AMD_LNZ]: the number of nonzeros in L (excluding the diagonal).
- * This is a slight upper bound because mass elimination is combined
- * with the approximate degree update. It is a rough upper bound if
- * there are many "dense" rows/columns. The rest of the statistics,
- * below, are also slight or rough upper bounds, for the same reasons.
- * The post-ordering of the assembly tree might also not exactly
- * correspond to a true elimination tree postordering.
- *
- * Info [AMD_NDIV]: the number of divide operations for a subsequent LDL'
- * or LU factorization of the permuted matrix A (P,P).
- *
- * Info [AMD_NMULTSUBS_LDL]: the number of multiply-subtract pairs for a
- * subsequent LDL' factorization of A (P,P).
- *
- * Info [AMD_NMULTSUBS_LU]: the number of multiply-subtract pairs for a
- * subsequent LU factorization of A (P,P), assuming that no numerical
- * pivoting is required.
- *
- * Info [AMD_DMAX]: the maximum number of nonzeros in any column of L,
- * including the diagonal.
- *
- * Info [14..19] are not used in the current version, but may be used in
- * future versions.
- */
- /* ------------------------------------------------------------------------- */
- /* direct interface to AMD */
- /* ------------------------------------------------------------------------- */
- /* amd_2 is the primary AMD ordering routine. It is not meant to be
- * user-callable because of its restrictive inputs and because it destroys
- * the user's input matrix. It does not check its inputs for errors, either.
- * However, if you can work with these restrictions it can be faster than
- * amd_order and use less memory (assuming that you can create your own copy
- * of the matrix for AMD to destroy). Refer to AMD/Source/amd_2.c for a
- * description of each parameter. */
- void amd_2
- (
- int n,
- int Pe [ ],
- int Iw [ ],
- int Len [ ],
- int iwlen,
- int pfree,
- int Nv [ ],
- int Next [ ],
- int Last [ ],
- int Head [ ],
- int Elen [ ],
- int Degree [ ],
- int W [ ],
- double Control [ ],
- double Info [ ]
- ) ;
- void amd_l2
- (
- SuiteSparse_long n,
- SuiteSparse_long Pe [ ],
- SuiteSparse_long Iw [ ],
- SuiteSparse_long Len [ ],
- SuiteSparse_long iwlen,
- SuiteSparse_long pfree,
- SuiteSparse_long Nv [ ],
- SuiteSparse_long Next [ ],
- SuiteSparse_long Last [ ],
- SuiteSparse_long Head [ ],
- SuiteSparse_long Elen [ ],
- SuiteSparse_long Degree [ ],
- SuiteSparse_long W [ ],
- double Control [ ],
- double Info [ ]
- ) ;
- /* ------------------------------------------------------------------------- */
- /* amd_valid */
- /* ------------------------------------------------------------------------- */
- /* Returns AMD_OK or AMD_OK_BUT_JUMBLED if the matrix is valid as input to
- * amd_order; the latter is returned if the matrix has unsorted and/or
- * duplicate row indices in one or more columns. Returns AMD_INVALID if the
- * matrix cannot be passed to amd_order. For amd_order, the matrix must also
- * be square. The first two arguments are the number of rows and the number
- * of columns of the matrix. For its use in AMD, these must both equal n.
- *
- * NOTE: this routine returned TRUE/FALSE in v1.2 and earlier.
- */
- int amd_valid
- (
- int n_row, /* # of rows */
- int n_col, /* # of columns */
- const int Ap [ ], /* column pointers, of size n_col+1 */
- const int Ai [ ] /* row indices, of size Ap [n_col] */
- ) ;
- SuiteSparse_long amd_l_valid
- (
- SuiteSparse_long n_row,
- SuiteSparse_long n_col,
- const SuiteSparse_long Ap [ ],
- const SuiteSparse_long Ai [ ]
- ) ;
- /* ------------------------------------------------------------------------- */
- /* AMD memory manager and printf routines */
- /* ------------------------------------------------------------------------- */
- /* The user can redefine these to change the malloc, free, and printf routines
- * that AMD uses. */
- #ifndef EXTERN
- #define EXTERN extern
- #endif
- EXTERN void *(*amd_malloc) (size_t) ; /* pointer to malloc */
- EXTERN void (*amd_free) (void *) ; /* pointer to free */
- EXTERN void *(*amd_realloc) (void *, size_t) ; /* pointer to realloc */
- EXTERN void *(*amd_calloc) (size_t, size_t) ; /* pointer to calloc */
- EXTERN int (*amd_printf) (const char *, ...) ; /* pointer to printf */
- /* ------------------------------------------------------------------------- */
- /* AMD Control and Info arrays */
- /* ------------------------------------------------------------------------- */
- /* amd_defaults: sets the default control settings */
- void amd_defaults (double Control [ ]) ;
- void amd_l_defaults (double Control [ ]) ;
- /* amd_control: prints the control settings */
- void amd_control (double Control [ ]) ;
- void amd_l_control (double Control [ ]) ;
- /* amd_info: prints the statistics */
- void amd_info (double Info [ ]) ;
- void amd_l_info (double Info [ ]) ;
- #define AMD_CONTROL 5 /* size of Control array */
- #define AMD_INFO 20 /* size of Info array */
- /* contents of Control */
- #define AMD_DENSE 0 /* "dense" if degree > Control [0] * sqrt (n) */
- #define AMD_AGGRESSIVE 1 /* do aggressive absorption if Control [1] != 0 */
- /* default Control settings */
- #define AMD_DEFAULT_DENSE 10.0 /* default "dense" degree 10*sqrt(n) */
- #define AMD_DEFAULT_AGGRESSIVE 1 /* do aggressive absorption by default */
- /* contents of Info */
- #define AMD_STATUS 0 /* return value of amd_order and amd_l_order */
- #define AMD_N 1 /* A is n-by-n */
- #define AMD_NZ 2 /* number of nonzeros in A */
- #define AMD_SYMMETRY 3 /* symmetry of pattern (1 is sym., 0 is unsym.) */
- #define AMD_NZDIAG 4 /* # of entries on diagonal */
- #define AMD_NZ_A_PLUS_AT 5 /* nz in A+A' */
- #define AMD_NDENSE 6 /* number of "dense" rows/columns in A */
- #define AMD_MEMORY 7 /* amount of memory used by AMD */
- #define AMD_NCMPA 8 /* number of garbage collections in AMD */
- #define AMD_LNZ 9 /* approx. nz in L, excluding the diagonal */
- #define AMD_NDIV 10 /* number of fl. point divides for LU and LDL' */
- #define AMD_NMULTSUBS_LDL 11 /* number of fl. point (*,-) pairs for LDL' */
- #define AMD_NMULTSUBS_LU 12 /* number of fl. point (*,-) pairs for LU */
- #define AMD_DMAX 13 /* max nz. in any column of L, incl. diagonal */
- /* ------------------------------------------------------------------------- */
- /* return values of AMD */
- /* ------------------------------------------------------------------------- */
- #define AMD_OK 0 /* success */
- #define AMD_OUT_OF_MEMORY -1 /* malloc failed, or problem too large */
- #define AMD_INVALID -2 /* input arguments are not valid */
- #define AMD_OK_BUT_JUMBLED 1 /* input matrix is OK for amd_order, but
- * columns were not sorted, and/or duplicate entries were present. AMD had
- * to do extra work before ordering the matrix. This is a warning, not an
- * error. */
- /* ========================================================================== */
- /* === AMD version ========================================================== */
- /* ========================================================================== */
- /* AMD Version 1.2 and later include the following definitions.
- * As an example, to test if the version you are using is 1.2 or later:
- *
- * #ifdef AMD_VERSION
- * if (AMD_VERSION >= AMD_VERSION_CODE (1,2)) ...
- * #endif
- *
- * This also works during compile-time:
- *
- * #if defined(AMD_VERSION) && (AMD_VERSION >= AMD_VERSION_CODE (1,2))
- * printf ("This is version 1.2 or later\n") ;
- * #else
- * printf ("This is an early version\n") ;
- * #endif
- *
- * Versions 1.1 and earlier of AMD do not include a #define'd version number.
- */
- #define AMD_DATE "Jun 20, 2012"
- #define AMD_VERSION_CODE(main,sub) ((main) * 1000 + (sub))
- #define AMD_MAIN_VERSION 2
- #define AMD_SUB_VERSION 3
- #define AMD_SUBSUB_VERSION 1
- #define AMD_VERSION AMD_VERSION_CODE(AMD_MAIN_VERSION,AMD_SUB_VERSION)
- #ifdef __cplusplus
- }
- #endif
- #endif
|